A123270 a(0)=1, a(1)=1, a(n) = 5*a(n-1) + 4*a(n-2).
1, 1, 9, 49, 281, 1601, 9129, 52049, 296761, 1692001, 9647049, 55003249, 313604441, 1788035201, 10194593769, 58125109649, 331403923321, 1889520055201, 10773215969289, 61424160067249, 350213664213401, 1996764961336001
Offset: 0
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Lucyna Trojnar-Spelina, Iwona Włoch, On Generalized Pell and Pell-Lucas Numbers, Iranian Journal of Science and Technology, Transactions A: Science (2019), 1-7.
- Index entries for linear recurrences with constant coefficients, signature (5, 4).
Programs
-
Haskell
a123270 n = a123270_list !! n a123270_list = 1 : 1 : zipWith (-) (map (* 5) $ zipWith (+) (tail a123270_list) a123270_list) a123270_list -- Reinhard Zumkeller, Aug 16 2013
-
Mathematica
LinearRecurrence[{5,4},{1,1},30] (* Harvey P. Dale, Jul 25 2011 *)
Formula
a(n) = Sum_{k=0..n} 4^(n-k)*A122542(n,k).
G.f.: (1-4*x)/(1-5*x-4*x^2).
a(n) = 1 + 8*Sum_{k=0..n} A015537(k). - Alexander Adamchuk, Nov 03 2006
Comments