A123321 Products of 7 distinct primes (squarefree 7-almost primes).
510510, 570570, 690690, 746130, 870870, 881790, 903210, 930930, 1009470, 1067430, 1111110, 1138830, 1193010, 1217370, 1231230, 1272810, 1291290, 1345890, 1360590, 1385670, 1411410, 1438710, 1452990, 1504230, 1540770
Offset: 1
Keywords
Examples
a(1) = 510510 = 2*3*5*7*11*13*17 = A002110(7).
Links
- Rick L. Shepherd, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f7Q[n_]:=Last/@FactorInteger[n]=={1, 1, 1, 1, 1, 1, 1}; lst={};Do[If[f7Q[n], AppendTo[lst, n]], {n, 9!}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 26 2008 *) Select[Range[1600000],PrimeNu[#]==7&&SquareFreeQ[#]&] (* Harvey P. Dale, Sep 19 2013 *)
-
PARI
is(n)=omega(n)==7 && bigomega(n)==7 \\ Hugo Pfoertner, Dec 18 2018
-
Python
from math import isqrt, prod from sympy import primerange, integer_nthroot, primepi def A123321(n): def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,7))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return bisection(f) # Chai Wah Wu, Aug 31 2024
Extensions
More terms from Vladimir Joseph Stephan Orlovsky, Aug 26 2008
Comments