A123322 Products of 8 distinct primes (squarefree 8-almost primes).
9699690, 11741730, 13123110, 14804790, 15825810, 16546530, 17160990, 17687670, 18888870, 20030010, 20281170, 20930910, 21111090, 21411390, 21637770, 21951930, 23130030, 23393370, 23993970, 24534510, 25555530, 25571910
Offset: 1
Keywords
Examples
a(1) = 9699690 = 2*3*5*7*11*13*17*19 = A002110(8).
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..29422 (first 10000 terms from Rick Shepherd)
- Index to sequences related to prime signature
Crossrefs
Programs
-
Maple
N:= 3*10^7: # to get all terms <= N pmax:= floor(N/mul(ithprime(i),i=1..7)): Primes:= select(isprime,[2,seq(i,i=3..pmax,2)]): sort(select(`<`,map(convert,combinat:-choose(Primes,8),`*`),N)); # Robert Israel, Dec 18 2018
-
Mathematica
f8Q[n_]:=Last/@FactorInteger[n]=={1, 1, 1, 1, 1, 1, 1, 1}; lst={};Do[If[f8Q[n], AppendTo[lst, n]], {n, 10!, 11!}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 26 2008 *) Take[ Sort[ Times @@@ Subsets[ Prime@ Range@ 15, {8}]], 22] (* Robert G. Wilson v, Dec 18 2018 *)
-
PARI
is(n)=issquarefree(n)&&omega(n)==8 \\ Charles R Greathouse IV, Feb 01 2017, corrected (following an observation from Zak Seidov) by M. F. Hasler, Dec 19 2018
-
PARI
is(n) = my(f = factor(n)); omega(f) == 8 && bigomega(f) == 8 \\ David A. Corneth, Dec 18 2018
-
Python
from math import isqrt, prod from sympy import primerange, integer_nthroot, primepi def A123322(n): def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,8))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return bisection(f) # Chai Wah Wu, Aug 31 2024
Extensions
Edited by Robert Israel, Dec 18 2018
Comments