A123352 Triangle read by rows, giving Kekulé numbers for certain benzenoids (see the Cyvin-Gutman book for details).
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 14, 14, 1, 1, 5, 30, 84, 42, 1, 1, 6, 55, 330, 594, 132, 1, 1, 7, 91, 1001, 4719, 4719, 429, 1, 1, 8, 140, 2548, 26026, 81796, 40898, 1430, 1, 1, 9, 204, 5712, 111384, 884884, 1643356, 379236, 4862, 1
Offset: 0
Examples
Triangle T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows: 1; 1, 1; 1, 2, 1; 1, 3, 5, 1; 1, 4, 14, 14, 1; 1, 5, 30, 84, 42, 1; 1, 6, 55, 330, 594, 132, 1; 1, 7, 91, 1001, 4719, 4719, 429, 1; ...
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- Paul Barry, Notes on the Hankel transform of linear combinations of consecutive pairs of Catalan numbers, arXiv:2011.10827 [math.CO], 2020.
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 183).
- M. de Sainte-Catherine and G. Viennot, Enumeration of certain Young tableaux with bounded height, in: G. Labelle and P. Leroux (eds), Combinatoire énumérative, Lecture Notes in Mathematics, vol. 1234, Springer, Berlin, Heidelberg, 1986, pp. 58-67.
Crossrefs
Programs
-
Mathematica
A123352[n_, k_]:= Product[Binomial[2*n-2*j, n-j]/Binomial[n+j+1, n-j], {j, 0, n-k-1}]; Table[A123352[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 17 2021 *)
-
Sage
def A123352(n,k): return product( binomial(2*n-2*j, n-j)/binomial(n+j+1, n-j) for j in (0..n-k-1) ) flatten([[A123352(n,k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Dec 17 2021
Formula
T(n, n-1) = A000108(n).
T(n, n-2) = A005700(n-1).
T(n, n-3) = A006149(n-2).
T(n, n-4) = A006150(n-3).
T(n, n-5) = A006151(n-4).
Triangle T(n,k) = (-1)^C(k+1,2) * Product{1 <= i <= j <= k} (-2*(n+1)+i+j)/(i+j). - Paul Barry, Jan 22 2009
From G. C. Greubel, Dec 17 2021: (Start)
T(n, k) = Product_{j=0..n-k-1} binomial(2*n-2*j, n-j)/binomial(n+j+1, n-j).
T(n, k) = ((n+1)!/(k+1)!)*Product_{j=0..n-k-1} Catalan(n-j)/binomial(n+j+1, n-j). (End)
Extensions
More terms from Philippe Deléham, Apr 12 2007
Comments