cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123352 Triangle read by rows, giving Kekulé numbers for certain benzenoids (see the Cyvin-Gutman book for details).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 14, 14, 1, 1, 5, 30, 84, 42, 1, 1, 6, 55, 330, 594, 132, 1, 1, 7, 91, 1001, 4719, 4719, 429, 1, 1, 8, 140, 2548, 26026, 81796, 40898, 1430, 1, 1, 9, 204, 5712, 111384, 884884, 1643356, 379236, 4862, 1
Offset: 0

Views

Author

N. J. A. Sloane, Oct 14 2006

Keywords

Comments

There is another version in A078920. - Philippe Deléham, Apr 12 2007 [In other words, T(n,k) = A078920(n,n-k). - Petros Hadjicostas, Oct 19 2019]

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
  1;
  1, 1;
  1, 2,  1;
  1, 3,  5,    1;
  1, 4, 14,   14,    1;
  1, 5, 30,   84,   42,    1;
  1, 6, 55,  330,  594,  132,   1;
  1, 7, 91, 1001, 4719, 4719, 429, 1;
  ...
		

Crossrefs

Diagonals give A000108, A005700, A006149, A006150, A006151, etc.
Columns include (truncated versions of) A000012 (k=0), A000027 (k=1), A000330 (k=2), A006858 (k=3), and A091962 (k=4).
T(2n,n) gives A358597.
Cf. A078920.

Programs

  • Mathematica
    A123352[n_, k_]:= Product[Binomial[2*n-2*j, n-j]/Binomial[n+j+1, n-j], {j, 0, n-k-1}];
    Table[A123352[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 17 2021 *)
  • Sage
    def A123352(n,k): return product( binomial(2*n-2*j, n-j)/binomial(n+j+1, n-j) for j in (0..n-k-1) )
    flatten([[A123352(n,k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Dec 17 2021

Formula

T(n, n-1) = A000108(n).
T(n, n-2) = A005700(n-1).
T(n, n-3) = A006149(n-2).
T(n, n-4) = A006150(n-3).
T(n, n-5) = A006151(n-4).
Triangle T(n,k) = (-1)^C(k+1,2) * Product{1 <= i <= j <= k} (-2*(n+1)+i+j)/(i+j). - Paul Barry, Jan 22 2009
From G. C. Greubel, Dec 17 2021: (Start)
T(n, k) = Product_{j=0..n-k-1} binomial(2*n-2*j, n-j)/binomial(n+j+1, n-j).
T(n, k) = ((n+1)!/(k+1)!)*Product_{j=0..n-k-1} Catalan(n-j)/binomial(n+j+1, n-j). (End)

Extensions

More terms from Philippe Deléham, Apr 12 2007