cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A162930 Primes that can be written as a sum of a positive square and a positive cube in more than one way.

Original entry on oeis.org

17, 89, 233, 449, 577, 593, 1289, 1367, 1601, 1753, 2089, 2521, 3391, 4481, 4721, 5953, 6121, 6427, 7057, 7577, 8081, 9649, 10313, 10657, 10729, 11969, 12329, 13121, 13457, 15137, 15193, 15641, 15661, 16033, 16649, 18523, 21673, 21961, 23201
Offset: 1

Views

Author

Keywords

Comments

A subset of these, 2089, 4481, 7057, 15193, 15641, etc., allows this representation in more than two ways (See A206606).

Examples

			The prime 17 can be written 1^3 + 4^2 as well as 2^3 + 3^2.
		

Crossrefs

Programs

  • Maple
    isA162930 := proc(n) if isprime(n) then wa := 0 ; for y from 1 to n/2 do if issqr(n-y^3) then if n -y^3 > 0 then wa := wa+1 ; fi; fi; od: RETURN( wa>1) ; else false; fi; end:
    for i from 1 to 2700 do if isA162930 ( ithprime(i)) then printf("%d,",ithprime(i)) ; fi; od: # R. J. Mathar, Jul 21 2009
  • Mathematica
    lst={};Do[Do[AppendTo[lst,n^2+m^3],{n,2*5!}],{m,2*5!}];lst=Sort[lst]; lst2={};Do[If[lst[[n]]==lst[[n+1]]&&PrimeQ[lst[[n]]],AppendTo[lst2, lst[[n]]]],{n,Length[lst]-1}];lst2;
  • PARI
    upto(n) = {my(res = List(), v = vector(n), i, j, i2); for(i = 1, sqrtint(n), i2 = i^2; for(j = 1, sqrtnint(n - i^2, 3), v[i2 + j^3]++)); forprime(p = 2, n, if(v[p] > 1, listput(res, p))); kill(v); res} \\ David A. Corneth, Jun 20 2023

Formula

A000040 INTERSECT A054402.

Extensions

Slightly edited by R. J. Mathar, Jul 21 2009

A122054 Least positive number with exactly n partitions into a square and a cube.

Original entry on oeis.org

1, 2, 17, 1737, 1025, 92025, 3375900, 5472225, 35964225, 930860225, 1000837225, 4979585600, 38515961025, 88154795025, 203947076025, 88813460025, 5684061441600, 77806025000000, 64745012358225
Offset: 0

Views

Author

Zak Seidov, Oct 15 2006

Keywords

Comments

The sequence is not monotonic.
Equals 1 followed by A060835.

Examples

			a(0)=1 because there's no partition of 1 into a square and a cube;
a(1)=2 because 2 = 1^2 + 1^3, one partition;
a(2)=17 because 17 = 3^2 + 2^3 = 4^2 + 1^3, two partitions;
a(3)=1737 because 1737 = 3^2 + 12^3 = 35^2 + 8^3 = 39^2 + 6^3, three partitions, etc.
Table of partitions:
{m,{a_i,b_i}}
{1,{-}}
{2,{1,1}}
{17,{3,2},{4,1}}
{1737,{3,12},{35,8},{39,6}}
{1025,{5,10},{30,5},{31,4},{32,1}}
{92025,{30,45},{152,41},{213,36},{255,30},{303,6}}
{3375900,{30,150},{1430,110},{1551,99},{1794,54},{1830,30},{1837,11}}
{5472225,{143,176},{990,165},{1935,120},{2035,110},{2251,74},{2277,66},{2321,44}}
{35964225,{165,330},{3167,296},{4035,270},{4191,264},{5610,165},{5885,110},{5973,66},{5997,6}}
{930860225,{13315,910},{23139,734},{26817,596},{29560,385},{30271,244},{30335,220},{30460,145},{30465,140},{30510,5}}
{1000837225,{915,1000},{16921,894},{19665,850},{20960,825},{24735,730},{29465,510},{30221,444},{31608,121},{31635,40},{31636,9}}
{4979585600,{8160,1700},{24512,1636},{40392,1496},{48785,1375},{49640,1360},{64515,935},{65560,880},{66840,800},{69960,440},{70024,424},{70565,55}}
{38515961025,{20330,3365},{41507,3326},{73755,3210},{95084,3089},{115595,2930},{118431,2904},{132255,2760},{153953,2456},{176355,1950},{190305,1320},{195570,645},{196254,69}}
		

Crossrefs

Formula

m=a^2+b^3, a,b>0.

Extensions

Corrected a(7), added a(8)-a(12) from Lars Blomberg, Feb 15 2016

A122034 Prime numbers with five partitions into a square and cube.

Original entry on oeis.org

3193361, 4251817, 4297609, 17969129, 22618657, 25266041, 30003697, 46918369, 58896881, 61953641, 64166273, 70045993, 70735409, 76033889, 82761857, 95049881, 102087721, 120618073, 127318537, 131584841, 177350489, 184799233
Offset: 1

Views

Author

Zak Seidov, Oct 15 2006

Keywords

Comments

Cf. A123388 Prime numbers with four partitions into a square and cube.

Examples

			{ p {a1,b1}..{a5,b5} }
{{3193361,{1769,40},{1606,85},{1481,100},{1047,128},{285,146}},
{4251817,{2061,16},{2035,48},{1005,148},{618,157},{17,162}},
{4297609,{1981,72},{1799,102},{1772,105},{1603,120},{654,157}},
{17969129,{4239,2},{4002,125},{3945,134},{3924,137},{627,260}},
{22618657,{4751,36},{4643,102},{4629,106},{4132,177},{3183,232}},
{25266041,{4693,148},{4482,173},{4065,206},{3552,233},{2453,268}}}
		

Crossrefs

Cf. A123388.

Formula

p=a^2+b^3 for five different pairs {a,b}.

Extensions

a(7)-a(22) from Donovan Johnson, Dec 14 2009
Showing 1-3 of 3 results.