A123475 Product of the primitive roots of prime(n).
1, 2, 6, 15, 672, 924, 11642400, 163800, 109681110000, 5590307923200, 970377408, 134088514560000, 138960660963091968000, 874927557504000, 3456156426256013065185600000000, 30688148115024695887527936000000
Offset: 1
Keywords
Examples
a(5)=672 because the primitive roots of 11 are {2,6,7,8}.
References
- C. F. Gauss, Disquisitiones Arithmeticae, Yale, 1965; see p. 52.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..145
Programs
-
Mathematica
PrimRoots[p_] := Select[Range[p-1], MultiplicativeOrder[ #,p]==p-1&]; Table[Times@@PrimRoots[Prime[n]], {n,20}] Times@@@Table[PrimitiveRootList[Prime[n]], {n, 20}] (* Harlan J. Brothers, Sep 02 2023 *)
-
PARI
vecprod(v)=prod(i=1,#v,v[i]) a(n,p=prime(n))=vecprod(select(n->znorder(Mod(n,p))==p-1,[2..p-1])) apply(p->a(0,p), primes(20)) \\ Charles R Greathouse IV, May 15 2015
-
Perl
use ntheory ":all"; sub list { my $n=shift; grep { znorder($,$n) == $n-1 } 2..$n-1; } say vecprod(list($)) for @{primes(nth_prime(20))}; # Dana Jacobsen, May 15 2015
Comments