cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123510 Arises in the normal ordering of functions of a*(a+)*a, where a and a+ are the boson annihilation and creation operators, respectively.

Original entry on oeis.org

1, 6, 42, 340, 3135, 32466, 373156, 4713192, 64877805, 966466270, 15487707246, 265617899196, 4853435351947, 94114052406570, 1930026941433480, 41728495237790416, 948549349736725401, 22613209058160908982, 564104540143144909810, 14694713818659640322340
Offset: 0

Views

Author

Karol A. Penson, Oct 02 2006

Keywords

Crossrefs

Programs

  • Magma
    I:=[6,42]; [1] cat [n le 2 select I[n] else 2*(n+2)*Self(n-1) - (n^2 -1)*((n+2)/n)*Self(n-2): n in [1..30]]; // G. C. Greubel, May 16 2018
  • Mathematica
    max = 16; s = (1/(1-x)^3)*Exp[x/(1-x)]*LaguerreL[2, -x/(1-x)] + O[x]^(max+1); CoefficientList[s, x]*Range[0, max]! (* Jean-François Alcover, May 23 2016 *)
  • PARI
    m=30; v=concat([6,42], vector(m-2)); for(n=3, m, v[n]=2*(n+2)*v[n-1]-(n^2 - 1)*((n+2)/n)*v[n-2]); concat([1], v) \\ G. C. Greubel, May 16 2018
    

Formula

E.g.f.: (1/(1-x)^3)*exp(x/(1-x))*LaguerreL(2,-x/(1-x)), where LaguerreL(p,y) are the Laguerre polynomials.
From Vaclav Kotesovec, Nov 13 2017: (Start)
Recurrence: n*a(n) = 2*n*(n+2)*a(n-1) - (n-1)*(n+1)*(n+2)*a(n-2).
a(n) ~ exp(2*sqrt(n) - n - 1/2) * n^(n + 9/4) / 2^(3/2) * (1 + 31/(48*sqrt(n))).
(End)

Extensions

a(0)=1 prepended by G. C. Greubel, Oct 31 2017
More terms from G. C. Greubel, May 16 2018