cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A123511 Arises in the normal ordering of functions of a*(a+)*a, where a and a+ are the boson annihilation and creation operators, respectively.

Original entry on oeis.org

1, 8, 70, 680, 7315, 86576, 1119468, 15710640, 237885285, 3865865080, 67113398066, 1239550196248, 24267176759735, 501941612835040, 10936819334789720, 250370971426742496, 6007479214999260873
Offset: 0

Views

Author

Karol A. Penson, Oct 02 2006

Keywords

Crossrefs

Programs

  • Mathematica
    max = 16; s = (1/(1 - x)^4)*Exp[x/(1 - x)]*LaguerreL[3, -x/(1 - x)] + O[x]^(max + 1); CoefficientList[s, x]*Range[0, max]! (* Jean-François Alcover, May 23 2016 *)

Formula

E.g.f.: (1/(1-x)^4)*exp(x/(1-x))*LaguerreL(3,-x/(1-x)).
From Vaclav Kotesovec, Nov 13 2017: (Start)
Recurrence: n*a(n) = 2*n*(n+3)*a(n-1) - (n-1)*(n+2)*(n+3)*a(n-2).
a(n) ~ exp(2*sqrt(n)-n-1/2) * n^(n + 13/4) / (3*2^(3/2)) * (1 + 31/(48*sqrt(n))).
(End)

Extensions

a(0)=1 prepended by G. C. Greubel, Oct 31 2017

A123512 Arises in the normal ordering of functions of a*(a+)*a, where a and a+ are the boson annihilation and creation operators, respectively.

Original entry on oeis.org

1, 10, 105, 1190, 14630, 194796, 2798670, 43204260, 713655855, 12564061510, 234896893231, 4648313235930, 97068707038940, 2133251854548920, 49215687006553740, 1189262114277026856, 30037396074996304365
Offset: 0

Views

Author

Karol A. Penson, Oct 02 2006

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[(1/(1 - x)^5)*Exp[x/(1 - x)]LaguerreL[4, -x/(1 - x)], {x,0,16}], x]*Range[0, 16]! (* Robert G. Wilson v, Oct 03 2006 *)
  • PARI
    LaguerreL(n,v='x) = {
      my(x='x+O('x^(n+1)), t='t);
      subst(polcoeff(exp(-x*t/(1-x))/(1-x), n), 't, v);
    };
    N=17;x='x+O('x^N); Vec(serlaplace((1/(1-x)^5)*exp(x/(1-x))*LaguerreL(4,-x/(1-x)))) \\ Gheorghe Coserea, Oct 26 2017

Formula

E.g.f.: (1/(1-x)^5)*exp(x/(1-x))*LaguerreL(4,-x/(1-x)).
From Vaclav Kotesovec, Nov 13 2017: (Start)
Recurrence: n*a(n) = 2*n*(n+4)*a(n-1) - (n-1)*(n+3)*(n+4)*a(n-2).
a(n) ~ exp(2*sqrt(n)-n-1/2) * n^(n + 17/4) / (3*2^(7/2)) * (1 + 31/(48*sqrt(n))).
(End)

Extensions

a(0)=1 prepended by Gheorghe Coserea, Oct 26 2017

A123525 Arises in the normal ordering of functions of a*(a+)*a, where a and a+ are the boson annihilation and creation operators, respectively.

Original entry on oeis.org

2, 14, 102, 836, 7730, 79962, 916454, 11533832, 158149026, 2346622310, 37458934502, 640013453004, 11652216012242, 225169809833906, 4602407562991590, 99194703240441872
Offset: 1

Views

Author

Karol A. Penson, Oct 02 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Rest[With[{nmax = 50}, CoefficientList[Series[(1/(1 - x)^2)*Exp[x/(1 - x)]*LaguerreL[1, 1/(x - 1)]*x, {x, 0, nmax}], x]*Range[0, nmax]!]] (* G. C. Greubel, Oct 14 2017 *)

Formula

E.g.f.: (1/(1-x)^2)*exp(x/(1-x))*LaguerreL(1,1/(x-1))*x.
From Vaclav Kotesovec, Nov 13 2017: (Start)
Recurrence: (n-2)*(n-1)*a(n) = 2*(n-2)*n^2*a(n-1) - (n-1)^3*n*a(n-2).
a(n) ~ exp(2*sqrt(n) - n - 1/2) * n^(n + 5/4) / sqrt(2) * (1 + 31/(48*sqrt(n))).
(End)

A123686 E.g.f.: (1-x^4)^(-1/2)*exp(x^2/(1-x^2))*BesselI(0,x^2/(x^2-1)) (since this is an even function, we do not give the intercalating 0's).

Original entry on oeis.org

1, 2, 54, 2460, 239190, 33124140, 6896500380, 1879519201560, 674900483206950, 300426422192196300, 164868151446145847700, 108046627817926248851400, 83890281074290204071858300, 75722368306901033144261835000
Offset: 0

Views

Author

Karol A. Penson, Oct 06 2006

Keywords

Comments

Arises in the normal ordering of functions of a*(a+)*a, where a and a+ are the boson annihilation and creation operators, respectively.

Crossrefs

Programs

  • Maple
    G:=(1-x^4)^(-1/2)*exp(x^2/(1-x^2))*BesselI(0,x^2/(x^2-1)): Gser:=series(G,x=0,40): seq((2*n)!*coeff(Gser,x,2*n),n=0..15); # Emeric Deutsch, Oct 31 2006
  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[(1 - x^4)^(-1/2)*Exp[x^2/(1 - x^2)]*BesselI[0, x^2/(x^2 - 1)], {x, 0, nmax}], x]*Range[0, nmax]!][[;; ;; 2 ]] (* G. C. Greubel, Oct 18 2017 *)

Formula

From Vaclav Kotesovec, Nov 13 2017: (Start)
Recurrence: n*a(n) = 2*(2*n - 1)*(3*n - 2)*a(n-1) + 4*(n-1)^2*(2*n - 3)*(2*n - 1)*(2*n + 1)*a(n-2) + 8*(n-2)^2*(n-1)*(2*n - 5)*(2*n - 3)*(2*n - 1)*a(n-3) - 16*(n-3)^2*(n-2)^2*(n-1)*(2*n - 7)*(2*n - 5)*(2*n - 3)*(2*n - 1)*a(n-4).
a(n) ~ 2^(2*n - 3/4) * exp(2*sqrt(2*n) - 2*n -1) * n^(2*n - 1/4) / sqrt(Pi) * (1 + 91/(48*sqrt(2*n))). (End)

Extensions

More terms from Emeric Deutsch, Oct 31 2006

A123687 E.g.f.: (1-x^2)^(-1/2)*exp(x^2/(1-x^2))*BesselI(0,x^2/(x^2-1)) (since this is an even function, we do not give the intercalating 0's).

Original entry on oeis.org

1, 3, 63, 3225, 297675, 42805665, 8790957945, 2433297161295, 870928551367875, 390718610250593625, 214426984078881899325, 141173178618822867992475, 109729771971447612972712725, 99352716603692210781106359375
Offset: 0

Views

Author

Karol A. Penson, Oct 06 2006

Keywords

Crossrefs

Programs

  • Maple
    G:=(1-x^2)^(-1/2)*exp(x^2/(1-x^2))*BesselI(0,x^2/(x^2-1)): Gser:=series(G,x=0,40): seq((2*n)!*coeff(Gser,x,2*n),n=0..15); # Emeric Deutsch, Oct 31 2006
  • Mathematica
    DeleteCases[Flatten@ MapIndexed[#1 (#2 - 1)! &, CoefficientList[Series[(1 - x^2)^(-1/2) Exp[x^2/(1 - x^2)] BesselI[0, x^2/(x^2 - 1)], {x, 0, 26}], x]], 0] (* Michael De Vlieger, Oct 10 2016 *)
    With[{nmax = 50}, CoefficientList[Series[(1 - x^2)^(-1/2)*Exp[x^2/(1 - x^2)]*BesselI[0, x^2/(x^2 - 1)], {x, 0, nmax}], x]*Range[0, nmax]!][[;; ;; 2 ]] (* G. C. Greubel, Oct 18 2017 *)

Formula

(n+1)*(2*n+3)^2*(2*n+1)^2*a(n) - (2*n+5)*(2*n+3)^2*a(n+1) + (n+2)*a(n+2) = 0. - Robert Israel, Oct 10 2016
a(n) ~ 2^(2*n - 1/4) * exp(2*sqrt(2*n) - 2*n - 1) * n^(2*n - 1/4) / sqrt(Pi) * (1 + 67/(48*sqrt(2*n))). - Vaclav Kotesovec, Nov 13 2017

Extensions

More terms from Emeric Deutsch, Oct 31 2006
Showing 1-5 of 5 results.