A123538 Numbers n such that A064168(n) is prime.
1, 2, 3, 4, 5, 7, 9, 10, 11, 14, 15, 20, 27, 35, 36, 39, 48, 77, 96, 99, 102, 112, 131, 167, 176, 201, 212, 339, 356, 411, 490, 546, 656, 684, 839, 878, 904, 920, 981, 999, 1106, 1260, 1431, 1588, 2119, 2271, 2322, 2513, 2588, 2630, 3013, 3228, 3717, 3822, 3904, 4248, 6270, 6491, 7013, 7228, 7341, 7982, 8483, 9191, 9419, 10139, 10498, 12967, 13597, 13627, 13835, 15594
Offset: 1
Keywords
Examples
Harmonic numbers begin H(n) = [ 1/1, 3/2, 11/6, 25/12, 137/60, 49/20, 363/140, 761/280, 7129/2520,... ]. A064168(n) begins {2, 5, 17, 37, 197, 69, 503, 1041, 9649, 9901, ...}. Thus a(1) = 1, a(2) = 2, a(3) = 3, a(4) = 4, a(5) = 5 because A064168(n) is prime for n = {1, 2, 3, 4, 5}. The next term a(6) = 7 because A064168(7) = 503 is prime but A064168(6) = 69 is composite.
Links
- Eric Weisstein, The World of Mathematics: Harmonic Number.
Programs
-
Maple
N:= 10^4: # to get terms <= N H:= ListTools:-PartialSums([seq(1/i,i=1..N)]): select(t -> isprime(numer(H[t])+denom(H[t])), [$1..N]); # Robert Israel, May 30 2019
-
Mathematica
s=0;Do[s=s+1/n;ss=Numerator[s]+Denominator[s];If[PrimeQ[ss],Print[{n,ss}]],{n,1,1106}] hnpQ[n_]:=With[{hn=HarmonicNumber[n]},PrimeQ[Denominator[hn]+Numerator[hn]]]; Select[Range[4000],hnpQ] (* The program generates the first 55 terms of the sequence. *) (* Harvey P. Dale, Nov 27 2024 *)
Extensions
More terms from Stefan Steinerberger, May 13 2007
More terms from Robert Israel, May 30 2019
Comments