cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123543 Number of connected labeled 2-regular pseudodigraphs (multiple arcs and loops allowed) of order n.

Original entry on oeis.org

0, 1, 2, 14, 201, 4704, 160890, 7538040, 462869190, 36055948320, 3474195588360, 405786523413600, 56502317464777800, 9248640671612865600, 1758505909558569771600, 384399253128691423022400, 95737858067835530264718000, 26952922550751326069548608000
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2006

Keywords

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1982.

Crossrefs

Connected version of A000681.
First column of A307804.
Cf. A123544.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, 1,
          n^2*b(n-1)-n*(n-1)^2*b(n-2)/2)
        end:
    a:= proc(n) option remember; `if`(n=0, 0, b(n)-
          add(j*binomial(n, j)*b(n-j)*a(j), j=1..n-1)/n)
        end:
    seq(a(n), n=0..17);  # Alois P. Heinz, Mar 22 2025
  • Mathematica
    m = 16;
    a681[n_] := n!*HypergeometricPFQ[{1/2, -n}, {}, -2]/2^n;
    egf = Log[1 + Sum[a681[k] x^k/k!, {k, 1, m}]];
    CoefficientList[egf + O[x]^m, x] Range[0, m-1]! (* Jean-François Alcover, Aug 26 2019 *)
  • PARI
    seq(n)={Vec(serlaplace(log(serlaplace(exp(x/2 + O(x*x^n))/sqrt(1-x + O(x*x^n))))), -(n+1))}; \\ Andrew Howroyd, Sep 09 2018

Formula

E.g.f.: log(1 + Sum_{k>0} A000681(k)*x^k/k!). - Andrew Howroyd, Sep 09 2018
a(n) ~ 2 * sqrt(Pi) * n^(2*n + 1/2) / exp(2*n - 1/2). - Vaclav Kotesovec, Jul 11 2025