A123543 Number of connected labeled 2-regular pseudodigraphs (multiple arcs and loops allowed) of order n.
0, 1, 2, 14, 201, 4704, 160890, 7538040, 462869190, 36055948320, 3474195588360, 405786523413600, 56502317464777800, 9248640671612865600, 1758505909558569771600, 384399253128691423022400, 95737858067835530264718000, 26952922550751326069548608000
Offset: 0
Keywords
References
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1982.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..253 (first 49 terms from R. W. Robinson)
Programs
-
Maple
b:= proc(n) option remember; `if`(n<2, 1, n^2*b(n-1)-n*(n-1)^2*b(n-2)/2) end: a:= proc(n) option remember; `if`(n=0, 0, b(n)- add(j*binomial(n, j)*b(n-j)*a(j), j=1..n-1)/n) end: seq(a(n), n=0..17); # Alois P. Heinz, Mar 22 2025
-
Mathematica
m = 16; a681[n_] := n!*HypergeometricPFQ[{1/2, -n}, {}, -2]/2^n; egf = Log[1 + Sum[a681[k] x^k/k!, {k, 1, m}]]; CoefficientList[egf + O[x]^m, x] Range[0, m-1]! (* Jean-François Alcover, Aug 26 2019 *)
-
PARI
seq(n)={Vec(serlaplace(log(serlaplace(exp(x/2 + O(x*x^n))/sqrt(1-x + O(x*x^n))))), -(n+1))}; \\ Andrew Howroyd, Sep 09 2018
Formula
E.g.f.: log(1 + Sum_{k>0} A000681(k)*x^k/k!). - Andrew Howroyd, Sep 09 2018
a(n) ~ 2 * sqrt(Pi) * n^(2*n + 1/2) / exp(2*n - 1/2). - Vaclav Kotesovec, Jul 11 2025