A123544
Number of connected labeled 2-regular relations of order n.
Original entry on oeis.org
0, 0, 1, 6, 87, 1980, 66270, 3050460, 184716630, 14231775600, 1359481407480, 157694893448400, 21835679256606600, 3557942554594428000, 673941365091485290800, 146851484638349504613600
Offset: 0
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1982.
-
m = 16;
a1499[n_] := (n - 1)*n!*Gamma[n - 1/2]*Hypergeometric1F1[2 - n, 3/2 - n, -1/2]/Sqrt[Pi];
egf = Log[1 + Sum[a1499[k] x^k/k!, {k, 1, m}]];
CoefficientList[egf + O[x]^m, x] Range[0, m-1]! (* Jean-François Alcover, Aug 26 2019 *)
-
seq(n)={Vec(serlaplace(log(serlaplace(exp(-x/2 + O(x*x^n))/sqrt(1-x + O(x*x^n))))), -(n+1))}; \\ Andrew Howroyd, Sep 09 2018
A307804
Triangle T(n,k) read by rows: number of labeled 2-regular digraphs (multiple arcs and loops allowed) on n nodes with k components.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 14, 6, 1, 0, 201, 68, 12, 1, 0, 4704, 1285, 200, 20, 1, 0, 160890, 36214, 4815, 460, 30, 1, 0, 7538040, 1422288, 160594, 13755, 910, 42, 1, 0, 462869190, 74416131, 7151984, 535864, 33110, 1624, 56, 1, 0, 36055948320, 5016901734, 413347787, 26821368, 1490664, 70686, 2688, 72, 1
Offset: 0
Triangle T(n,k) starts:
1;
0, 1;
0, 2, 1;
0, 14, 6, 1;
0, 201, 68, 12, 1;
0, 4704, 1285, 200, 20, 1;
0, 160890, 36214, 4815, 460, 30, 1;
0, 7538040, 1422288, 160594, 13755, 910, 42, 1;
...
-
b:= proc(n) option remember; `if`(n<2, 1,
n^2*b(n-1)-n*(n-1)^2*b(n-2)/2)
end:
a:= proc(n) option remember; `if`(n=0, 0, b(n)-
add(j*binomial(n, j)*b(n-j)*a(j), j=1..n-1)/n)
end:
g:= proc(n, k) option remember; `if`(n=0, x^k/k!,
add(g(n-j, k+1)*a(j)*binomial(n,j), j=1..n))
end:
T:= (n,k)-> coeff(g(n, 0), x, k):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Mar 22 2025
-
b[n_] := b[n] = If[n < 2, 1, n^2*b[n - 1] - n*(n - 1)^2*b[n - 2]/2];
a[n_] := a[n] = If[n == 0, 0, b[n] - Sum[j*Binomial[n, j]*b[n - j]*a[j], {j, 1, n - 1}]/n];
g[n_, k_] := g[n, k] = If[n == 0, x^k/k!, Sum[g[n - j, k + 1]*a[j]* Binomial[n, j], {j, 1, n}]];
T[n_, k_] := Coefficient[g[n, 0], x, k];
Table[Table[T[n, k], { k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 16 2025, after Alois P. Heinz *)
A344379
Triangle read by rows: T(n,k) is the number of labeled 3-regular digraphs (multiple arcs and loops allowed) on n nodes with k components.
Original entry on oeis.org
1, 3, 1, 45, 9, 1, 1782, 207, 18, 1, 142164, 10260, 585, 30, 1, 19943830, 953424, 35235, 1305, 45, 1, 4507660380, 151369792, 3731049, 93555, 2520, 63, 1, 1540185346560, 38205961380, 657600076, 11122209, 211680, 4410, 84, 1, 757560406751120, 14455803484728
Offset: 1
Triangle begins:
1;
3, 1;
45, 9, 1;
1782, 207, 18, 1;
142164, 10260, 585, 30, 1;
19943830, 953424, 35235, 1305, 45, 1;
4507660380, 151369792, 3731049, 93555, 2520, 63, 1;
1540185346560, 38205961380, 657600076, 11122209, 211680, 4410, 84, 1;
...
-
# Given a list L[1], L[2],... for labeled not necessarily connected graphs, generate
# triangle of labeled graphs with k weakly connected components.
lblNonc := proc(L::list)
local k,x,g,Lkx,t,Lkxt,n,c ;
add ( op(k,L)*x^k/k!,k=1..nops(L)) ;
log(1+%) ; # formula from A123543
g := taylor(%,x=0,nops(L)) ;
seq( coeftayl(g,x=0,i)*i!,i=1..nops(L)) ;
print(lc) ;# first column
Lkx := add ( coeftayl(g,x=0,i)*x^i,i=1..nops(L)) ;
Lkxt := exp(t*%) ;
for n from 0 to nops(L)-1 do
tmp := coeftayl(Lkxt,x=0,n) ;
for c from 0 to n do
printf("%a ", coeftayl(tmp,t=0,c)*n!) ;
end do:
printf("\n") ;
end do:
end proc:
L := [1, 4, 55, 2008, 153040, 20933840, 4662857360, 1579060246400, 772200774683520, 523853880779443200, 477360556805016931200, 569060910292172349004800, 868071731152923490921728000, 1663043727673392444887284377600, 3937477620391471128913917360384000] ;
lblNonc(L) ;
Showing 1-3 of 3 results.
Comments