cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A123544 Number of connected labeled 2-regular relations of order n.

Original entry on oeis.org

0, 0, 1, 6, 87, 1980, 66270, 3050460, 184716630, 14231775600, 1359481407480, 157694893448400, 21835679256606600, 3557942554594428000, 673941365091485290800, 146851484638349504613600
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2006

Keywords

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1982.

Crossrefs

Connected version of A001499. Unlabeled version is A005642.
Cf. A123543.

Programs

  • Mathematica
    m = 16;
    a1499[n_] := (n - 1)*n!*Gamma[n - 1/2]*Hypergeometric1F1[2 - n, 3/2 - n, -1/2]/Sqrt[Pi];
    egf = Log[1 + Sum[a1499[k] x^k/k!, {k, 1, m}]];
    CoefficientList[egf + O[x]^m, x] Range[0, m-1]! (* Jean-François Alcover, Aug 26 2019 *)
  • PARI
    seq(n)={Vec(serlaplace(log(serlaplace(exp(-x/2 + O(x*x^n))/sqrt(1-x + O(x*x^n))))), -(n+1))}; \\ Andrew Howroyd, Sep 09 2018

Formula

E.g.f.: log(1 + Sum_{k>0} A001499(k)*x^k/k!). - Andrew Howroyd, Sep 09 2018

A307804 Triangle T(n,k) read by rows: number of labeled 2-regular digraphs (multiple arcs and loops allowed) on n nodes with k components.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 14, 6, 1, 0, 201, 68, 12, 1, 0, 4704, 1285, 200, 20, 1, 0, 160890, 36214, 4815, 460, 30, 1, 0, 7538040, 1422288, 160594, 13755, 910, 42, 1, 0, 462869190, 74416131, 7151984, 535864, 33110, 1624, 56, 1, 0, 36055948320, 5016901734, 413347787, 26821368, 1490664, 70686, 2688, 72, 1
Offset: 0

Views

Author

R. J. Mathar, Apr 29 2019

Keywords

Examples

			Triangle T(n,k) starts:
  1;
  0,       1;
  0,       2,       1;
  0,      14,       6,      1;
  0,     201,      68,     12,     1;
  0,    4704,    1285,    200,    20,   1;
  0,  160890,   36214,   4815,   460,  30,  1;
  0, 7538040, 1422288, 160594, 13755, 910, 42, 1;
  ...
		

Crossrefs

Cf. A123543 (column k=1), A000681 (row sums).

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, 1,
          n^2*b(n-1)-n*(n-1)^2*b(n-2)/2)
        end:
    a:= proc(n) option remember; `if`(n=0, 0, b(n)-
          add(j*binomial(n, j)*b(n-j)*a(j), j=1..n-1)/n)
        end:
    g:= proc(n, k) option remember; `if`(n=0, x^k/k!,
          add(g(n-j, k+1)*a(j)*binomial(n,j), j=1..n))
        end:
    T:= (n,k)-> coeff(g(n, 0), x, k):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Mar 22 2025
  • Mathematica
    b[n_] := b[n] = If[n < 2, 1, n^2*b[n - 1] - n*(n - 1)^2*b[n - 2]/2];
    a[n_] := a[n] = If[n == 0, 0, b[n] - Sum[j*Binomial[n, j]*b[n - j]*a[j], {j, 1, n - 1}]/n];
    g[n_, k_] := g[n, k] = If[n == 0, x^k/k!, Sum[g[n - j, k + 1]*a[j]* Binomial[n, j], {j, 1, n}]];
    T[n_, k_] := Coefficient[g[n, 0], x, k];
    Table[Table[T[n, k], { k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 16 2025, after Alois P. Heinz *)

Formula

T(n,1) = A123543(n).
T(n,k) = Sum_{Compositions n=n_1+n_2+...n_k, n_i>=1} multinomial(n; n_1,n_2,..,n_k) * T(n_1,1) * T(n_2,1)*... *T(n_k,1)/ k!.
E.g.f.: Sum_{n,k>=0} T(n,k)*x^n*t^k/n! = exp(t*E123543(x)) where E123543(x) = Sum_{n>=1} A123543(n)*x^n/t^n. [Gilbert]. - R. J. Mathar, May 08 2019
Conjectures from Mikhail Kurkov, Mar 22 2025: (Start)
Recursion for the k-th column (independently of other columns): T(n,k) = (1/(n-k))*Sum_{j=2..n-k+1} c(j-1)*binomial(n,j)*T(n-j+1,k) for 1 <= k < n with T(n,n) = 1 where b(n) = A123543(n), c(n) = n*b(n+1) - Sum_{j=1..n-1} binomial(n+1,j+1)*b(n-j+1)*c(j) for n > 0.
Production matrix is binomial(n,k)*d(n-k) (starting from the first row) for 0 <= k <= n, 0 otherwise where d(n) = E_n^{(-1)} from A356145 with a_k = b(k+1) for k > 0 (see Tom Copeland link).
The same things seems to work for any b(n) with b(1) = 1 (I mean that it works for e.g.f. exp(t*F(x)) where F(x) = Sum_{n>=1} b(n)*x^n/n!). (End)

A344379 Triangle read by rows: T(n,k) is the number of labeled 3-regular digraphs (multiple arcs and loops allowed) on n nodes with k components.

Original entry on oeis.org

1, 3, 1, 45, 9, 1, 1782, 207, 18, 1, 142164, 10260, 585, 30, 1, 19943830, 953424, 35235, 1305, 45, 1, 4507660380, 151369792, 3731049, 93555, 2520, 63, 1, 1540185346560, 38205961380, 657600076, 11122209, 211680, 4410, 84, 1, 757560406751120, 14455803484728
Offset: 1

Views

Author

R. J. Mathar, May 16 2021

Keywords

Comments

Derived by interpreting A001500 as the number of labeled 3-regular digraphs (in-degree and out-degree at each node=3), without regarding the trace (which means loops are allowed) and no limit on the individual entries (so multiple arcs in the same direction between nodes are allowed).
Then the formula of A123543 (Gilbert's article) allows these values to be refined by the number of weakly connected components.

Examples

			Triangle begins:
              1;
              3,           1;
             45,           9,         1;
           1782,         207,        18,        1;
         142164,       10260,       585,       30,      1;
       19943830,      953424,     35235,     1305,     45,    1;
     4507660380,   151369792,   3731049,    93555,   2520,   63,  1;
  1540185346560, 38205961380, 657600076, 11122209, 211680, 4410, 84, 1;
...
		

Crossrefs

Cf. A307804 (2-regular analog), A001500 (row sums), A045943 (subdiagonal).

Programs

  • Maple
    # Given a list L[1], L[2],... for labeled not necessarily connected graphs, generate
    # triangle of labeled graphs with k weakly connected components.
    lblNonc := proc(L::list)
        local k,x,g,Lkx,t,Lkxt,n,c ;
        add ( op(k,L)*x^k/k!,k=1..nops(L)) ;
        log(1+%) ; # formula from A123543
        g := taylor(%,x=0,nops(L)) ;
        seq( coeftayl(g,x=0,i)*i!,i=1..nops(L)) ;
        print(lc) ;# first column
        Lkx := add ( coeftayl(g,x=0,i)*x^i,i=1..nops(L)) ;
        Lkxt := exp(t*%) ;
        for n from 0 to nops(L)-1 do
            tmp := coeftayl(Lkxt,x=0,n) ;
            for c from 0 to n do
                printf("%a ", coeftayl(tmp,t=0,c)*n!) ;
            end do:
            printf("\n") ;
        end do:
    end proc:
    L := [1, 4, 55, 2008, 153040, 20933840, 4662857360, 1579060246400, 772200774683520, 523853880779443200, 477360556805016931200, 569060910292172349004800, 868071731152923490921728000, 1663043727673392444887284377600, 3937477620391471128913917360384000] ;
    lblNonc(L) ;

Formula

T(n,n) = 1. [n nodes, each with a triple loop].
T(n,n-1) = A045943(n-1). [n-1 isolated nodes, one labeled pair with n(n-1)/2 choices of labels and 3 choices of zero, one or two loops at the lower label].
T(n,k) = Sum_{Compositions n=n_1+n_2+...n_k, n_i>=1} multinomial(n; n_1,n_2,...,n_k) * T(n_1,1) * T(n_2,1) * ... *T(n_k,1) / k!.
Showing 1-3 of 3 results.