A123562 Pascal-(1,-3,1) array, read by antidiagonals.
1, 1, 1, 1, -1, 1, 1, -3, -3, 1, 1, -5, -3, -5, 1, 1, -7, 1, 1, -7, 1, 1, -9, 9, 11, 9, -9, 1, 1, -11, 21, 17, 17, 21, -11, 1, 1, -13, 37, 11, 1, 11, 37, -13, 1, 1, -15, 57, -15, -39, -39, -15, 57, -15, 1, 1, -17, 81, -69, -87, -81, -87, -69, 81, -17, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, -1, 1; 1, -3, -3, 1; 1, -5, -3, -5, 1; 1, -7, 1, 1, -7, 1; 1, -9, 9, 11, 9, -9, 1; 1, -11, 21, 17, 17, 21, -11, 1; 1, -13, 37, 11, 1, 11, 37, -13, 1;
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_] := Sum[Binomial[n - j, k]*Binomial[k, j]*(-3)^j, {j, 0, n}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 15 2017 *)
-
PARI
for(n=0,10, for(k=0,n, print1(sum(j=0,n, binomial(n-j,k)* binomial(k,j)*(-3)^j), ", "))) \\ G. C. Greubel, Oct 15 2017
Formula
Sum_{k=0..n} T(n,k) = A088137(n+1).
T(n,k) = T(n-1,k-1) + T(n-1,k) - 3*T(n-2,k-1), n>0.
From Paul Barry, Jan 24 2011: (Start)
T(n,k) = Sum_{j=0..n} binomial(n-j,k)*binomial(k,j)*(-3)^j.
T(n,k) = [k<=n]*Hypergeometric2F1(-k,k-n,1,-2). (End)
E.g.f. for the n-th subdiagonal: exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(-2*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 - 4*x + 4*x^2/2) = 1 - 3*x - 3*x^2/2! + x^3/3! + 9*x^4/4! + 21*x^5/5! + .... - Peter Bala, Mar 05 2017
Comments