A123915 Number of binary words whose (unique) decreasing Lyndon decomposition is into Lyndon words each with an even number of 1's; EULER transform of A051841.
1, 1, 1, 2, 3, 6, 11, 21, 39, 75, 143, 275, 528, 1020, 1971, 3821, 7414, 14419, 28072, 54739, 106847, 208815, 408470, 799806, 1567333, 3073916, 6032971, 11848693, 23285202, 45787650, 90085410, 177331748, 349243800, 688129474, 1356433342, 2674877358, 5276869233
Offset: 0
Keywords
Examples
The binary words 00000, 01100, 00110, 01111, 00011, 00101 of length 5 decompose as 0*0*0*0*0, 011*0*0, 0011*0, 01111, 00011, 00101 and each subword has an even number of 1's, therefore a(5)=6.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A051841.
Programs
-
Maple
with(numtheory): b:= proc(n) option remember; add(igcd(d, 2)* 2^(n/d)*mobius(d), d=divisors(n))/(2*n) end: a:= proc(n) option remember; `if`(n=0, 1, add(add( d*b(d), d=divisors(j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Jul 28 2017
-
Mathematica
b[n_] := b[n] = Sum[GCD[d, 2] 2^(n/d) MoebiusMu[d], {d, Divisors[n]}]/(2n); a[n_] := a[n] = If[n==0, 1, Sum[Sum[d b[d], {d, Divisors[j]}] a[n-j], {j, 1, n}]/n]; a /@ Range[0, 40] (* Jean-François Alcover, Nov 19 2020, after Alois P. Heinz *)
Formula
Prod_{n>=1} 1/(1-q^n)^A051841(n) = 1+sum_{n>=1} a(n) q^n.
a(n) ~ c * 2^n / sqrt(n), where c = 0.466342789995157602308480670781344540837057109916338560252870092619488755668... - Vaclav Kotesovec, May 31 2019
Extensions
a(0)=1 prepended by Alois P. Heinz, Jul 28 2017