cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123915 Number of binary words whose (unique) decreasing Lyndon decomposition is into Lyndon words each with an even number of 1's; EULER transform of A051841.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 11, 21, 39, 75, 143, 275, 528, 1020, 1971, 3821, 7414, 14419, 28072, 54739, 106847, 208815, 408470, 799806, 1567333, 3073916, 6032971, 11848693, 23285202, 45787650, 90085410, 177331748, 349243800, 688129474, 1356433342, 2674877358, 5276869233
Offset: 0

Views

Author

Mike Zabrocki, Oct 28 2006

Keywords

Examples

			The binary words 00000, 01100, 00110, 01111, 00011, 00101 of length 5 decompose as 0*0*0*0*0, 011*0*0, 0011*0, 01111, 00011, 00101 and each subword has an even number of 1's, therefore a(5)=6.
		

Crossrefs

Cf. A051841.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; add(igcd(d, 2)*
          2^(n/d)*mobius(d), d=divisors(n))/(2*n)
        end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          d*b(d), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 28 2017
  • Mathematica
    b[n_] := b[n] = Sum[GCD[d, 2] 2^(n/d) MoebiusMu[d], {d, Divisors[n]}]/(2n);
    a[n_] := a[n] = If[n==0, 1, Sum[Sum[d b[d], {d, Divisors[j]}] a[n-j], {j, 1, n}]/n];
    a /@ Range[0, 40] (* Jean-François Alcover, Nov 19 2020, after Alois P. Heinz *)

Formula

Prod_{n>=1} 1/(1-q^n)^A051841(n) = 1+sum_{n>=1} a(n) q^n.
a(n) ~ c * 2^n / sqrt(n), where c = 0.466342789995157602308480670781344540837057109916338560252870092619488755668... - Vaclav Kotesovec, May 31 2019

Extensions

a(0)=1 prepended by Alois P. Heinz, Jul 28 2017