cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A079137 Number of (undirected) Hamiltonian paths on the 4 X n knight graph.

Original entry on oeis.org

0, 0, 8, 0, 82, 744, 6378, 31088, 189688, 1213112, 6683852, 36486328, 201282470, 1083585304, 5706117458, 29819231288, 154430502724, 790787799376, 4014945695196, 20241304810488, 101336136490228, 504096313001272, 2493533648002492, 12270473056485396
Offset: 1

Views

Author

Eric W. Weisstein, Dec 28 2002

Keywords

References

  • Kraitchik, M. Mathematical Recreations. New York: W. W. Norton, p. 263, 1942.

Crossrefs

See A079312 for 4 times these numbers, A123935 for twice these numbers, A123936 for these numbers halved.

Extensions

More terms from André Pönitz (poenitz(AT)htwm.de), Jun 11 2003
Edited by N. J. A. Sloane, Oct 30 2006, following suggestions from Colin Rose
Terms a(22) and beyond from Andrew Howroyd, Jul 01 2017

A309273 Number of semi-magic (only short lines are magic) knight's tours on a 4 X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 9, 16, 38, 104, 267, 608, 1444, 3480, 8221, 19212, 45262, 213280, 250247, 587072, 1378912, 3237456
Offset: 1

Views

Author

Awani Kumar, Jul 20 2019

Keywords

Examples

			Example 4 X 7 semi-magic knight's tour (only short lines are magic):
  +----+----+----+----+----+----+----+
  |  9 | 28 |  7 | 18 |  3 | 24 | 13 |
  +----+----+----+----+----+----+----+
  |  6 | 17 | 10 | 25 | 14 | 21 |  2 |
  +----+----+----+----+----+----+----+
  | 27 |  8 | 15 |  4 | 19 | 12 | 23 |
  +----+----+----+----+----+----+----+
  | 16 |  5 | 26 | 11 | 22 |  1 | 20 |
  +----+----+----+----+----+----+----+
.
Example 4 X 16 semi-magic knight's tour (only short lines are magic):
   1 62  3 36 29 38 19 58 25 44 17 56 23 52 15 54
  32 35 30 61  4 59 26 45 18 57 24 43 16 55 12 51
  63  2 33 28 37  6 39 20 47  8 41 22 49 10 53 14
  34 31 64  5 60 27 46  7 40 21 48  9 42 13 50 11
		

Crossrefs

A328341 Number of geometrically distinct open knight's tours on a 4 X n chessboard.

Original entry on oeis.org

0, 0, 3, 0, 22, 186, 1603, 7772, 47478, 303278, 1671273, 9121582, 50322028, 270896326, 1426536267, 7454807822, 38607660199, 197696949844, 1003736587788, 5060326202622, 25334034892953, 126024078250318, 623383415637750, 3067618264121349, 15022847233751804, 73245459228339114
Offset: 1

Views

Author

Andrew Howroyd, Oct 12 2019

Keywords

Examples

			a(3) = 3 because there are two symmetric and one asymmetric tour:
  +----+----+----+----+   +----+----+----+----+   +----+----+----+----+
  |  8 | 11 |  6 |  3 |   |  1 |  4 |  7 | 10 |   |  1 |  4 |  7 | 10 |
  +----+----+----+----+   +----+----+----+----+   +----+----+----+----+
  |  1 |  4 |  9 | 12 |   |  8 | 11 |  2 |  5 |   | 12 |  9 |  2 |  5 |
  +----+----+----+----+   +----+----+----+----+   +----+----+----+----+
  | 10 |  7 |  2 |  5 |   |  3 |  6 |  9 | 12 |   |  3 |  6 | 11 |  8 |
  +----+----+----+----+   +----+----+----+----+   +----+----+----+----+
		

Crossrefs

Formula

a(2*n) = A123936(2*n)/2; a(2*n-1) = (A123936(2*n-1) + A328340(n))/2.

A309271 Number of magic knight's tours on a 4 X 2n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 16, 88, 464, 2076, 9904, 47456
Offset: 1

Views

Author

Awani Kumar, Jul 20 2019

Keywords

Examples

			An example of a magic knight's tour on a 4 X 18 board. All rows sum to 657 and all columns sum to 146:
    1 70 33 40  5 42  9 66 29 62 27 58 13 52 25 56 19 50
   36 39  4 69 32 65  6 43 10 45 14 61 26 57 20 51 24 55
   71  2 37 34 41  8 67 30 63 28 59 12 47 16 53 22 49 18
   38 35 72  3 68 31 64  7 44 11 46 15 60 21 48 17 54 23
		

References

  • M. Kraitchik, Mathematical Recreations, Dover, 1953, 257-266.

Crossrefs

Showing 1-4 of 4 results.