cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A123936 a(n) = A079137(n)/2.

Original entry on oeis.org

0, 0, 4, 0, 41, 372, 3189, 15544, 94844, 606556, 3341926, 18243164, 100641235, 541792652, 2853058729, 14909615644, 77215251362, 395393899688, 2007472847598, 10120652405244, 50668068245114, 252048156500636, 1246766824001246, 6135236528242698, 30045694433419662
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2006

Keywords

Comments

Number of nonequivalent (or geometrically distinct) directed open knight's tours on a 4 X n chessboard up to rotation and reflection. See A328341 for the number of geometrically distinct undirected open knights's tours. - Andrew Howroyd, Oct 12 2019

Crossrefs

Extensions

Terms a(22) and beyond from Andrew Howroyd, Oct 13 2019

A079312 a(n) = 4 * A079137(n).

Original entry on oeis.org

0, 0, 32, 0, 328, 2976, 25512, 124352, 758752, 4852448, 26735408, 145945312, 805129880, 4334341216, 22824469832, 119276925152, 617722010896, 3163151197504, 16059782780784, 80965219241952, 405344545960912
Offset: 1

Views

Author

Alexander D. Healy, Feb 11 2003

Keywords

Comments

See A079137, which is the main entry for this problem.

Crossrefs

Equals 4*A079137(n). Cf. A070030.

Extensions

Incorrect description removed by Andrew Howroyd, Oct 12 2019

A083386 Number (undirected) Hamiltonian paths in the 5 X n knight graph.

Original entry on oeis.org

0, 0, 0, 82, 864, 18784, 622868, 18061054, 264895640, 7886117822, 128411926952, 3611823644006, 56348098488396, 1548284436152798, 24535910156176100, 650456890341276338, 10364916108987670024, 267426031403733462626
Offset: 1

Views

Author

André Pönitz (poenitz(AT)htwm.de), Jun 11 2003

Keywords

Comments

The number of (directed) knight's tours is twice this. - Colin Rose, Jun 12 2006

Examples

			There are 864 knight's tours on a 5 X 5 chessboard.
		

References

  • Jellis: http://home.freeuk.net/ktn/5a.htm [broken link ?]

Crossrefs

A165134 Number of directed Hamiltonian paths in the n X n knight graph.

Original entry on oeis.org

1, 0, 0, 0, 1728, 6637920, 165575218320, 19591828170979904
Offset: 1

Views

Author

[No name given] (c.candide(AT)free.fr), Sep 04 2009

Keywords

Comments

Previous name was: Number of knight's paths visiting each square of an n X n chessboard exactly once.

Examples

			From _Gheorghe Coserea_, Oct 08 2016: (Start)
For n=5 the numbers in the table below give the number of knight's paths starting at the respective position on the 5 X 5 chessboard.  In total there are a(5) = 304*4 + 56*8 + 64 = 1728 solutions.
    [1]  [2]  [3]  [4]  [5]
[1] 304    0   56    0  304
[2]   0   56    0   56    0
[3]  56    0   64    0   56
[4]   0   56    0   56    0
[5] 304    0   56    0  304
(End)
		

Crossrefs

Cf. Undirected Hamiltonian paths: A169696 (3 X n), A079137 (4 X n), A083386 (5 X n), A306281 (6 X n), A306283 (7 X n), A308131 (n X n).

Extensions

a(7) from Guenter Stertenbrink, added by Alex Chernov, Sep 01 2013
a(1)=1, a(2)=0 prepended by Max Alekseyev, Sep 22 2013
a(8) from Alex Chernov, May 10 2014
Name made more precise by Eric W. Weisstein, Apr 14 2019

A118067 Number of (directed) Hamiltonian paths in the 3 X n knight graph.

Original entry on oeis.org

0, 0, 0, 16, 0, 0, 104, 792, 1120, 6096, 21344, 114496, 257728, 1292544, 3677568, 17273760, 46801984, 211731376, 611507360, 2645699504, 7725948608, 32451640000, 97488160384, 397346625760, 1214082434112, 4835168968464, 15039729265856, 58641619298000
Offset: 1

Views

Author

Colin Rose, May 11 2006

Keywords

Comments

1. Jelliss computes the number of tour diagrams (which is equal to half the number of tours). 2. Sequence A079137 computes the number of tour DIAGRAMS for a 4 X k board (again, equal to half the number of tours). 3. Kraitchik (1942) incorrectly reports 376 tour diagrams for the 3 X 8 case; the correct number is 396 (i.e., 792 tours) [cf. Rose, Jelliss].

References

  • Kraitchik, M., Mathematical Recreations. New York: W. W. Norton, pp. 264-5, 1942.

Crossrefs

Programs

  • Mathematica
    Mathematica notebook available at: http://www.tri.org.au/knightframe.html

Formula

a(n) = 2 * A169696(n). - Andrew Howroyd, Jul 01 2017

Extensions

a(13) from Eric W. Weisstein, Mar 13 2009
a(14)-a(21) from Seiichi Manyama, Apr 25 2016
a(22)-a(28) from Andrew Howroyd, Jul 01 2017

A123935 Number of (directed) Hamiltonian paths on the 4 X n knight graph.

Original entry on oeis.org

0, 0, 16, 0, 164, 1488, 12756, 62176, 379376, 2426224, 13367704, 72972656, 402564940, 2167170608, 11412234916, 59638462576, 308861005448, 1581575598752, 8029891390392, 40482609620976, 202672272980456, 1008192626002544, 4987067296004984, 24540946112970792
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2006

Keywords

Crossrefs

Formula

a(n) = 2*A079137(n).

Extensions

Terms a(22) and beyond from Andrew Howroyd, Oct 13 2019

A306281 Number of (undirected) Hamiltonian paths on the 6 X n knight graph.

Original entry on oeis.org

0, 0, 0, 744, 18784, 3318960, 389969466, 24964893804, 1770631206422, 143827657320448, 10668015492137018, 763955912402146956, 55382275594728895388, 4008456113318585117624, 285329658478008271167456, 20203324505809248032547768, 1425847547641332606081597198, 100103728161914529291271962728
Offset: 1

Views

Author

Seiichi Manyama, Feb 03 2019

Keywords

Crossrefs

Cf. A169696 (3 X n), A079137 (4 X n), A083386 (5 X n), this sequence (6 X n), A306283 (7 X n), A308131 (n X n).

Extensions

a(8)-a(11) from Andrew Howroyd, Oct 14 2019
a(12) from Valentin Gubarev, Dec 23 2024
a(13)-a(18) from Andrew Howroyd, Dec 26 2024

A306283 Number of (undirected) Hamiltonian paths on the 7 X n knight graph.

Original entry on oeis.org

0, 0, 52, 6378, 622868, 389969466, 82787609160, 20666425060328, 2903212163753000, 1025241126020698238
Offset: 1

Views

Author

Seiichi Manyama, Feb 03 2019

Keywords

Crossrefs

Cf. A169696 (3 X n), A079137 (4 X n), A083386 (5 X n), A306281 (6 X n), this sequence (7 X n).

Extensions

a(8)-a(10) from Valentin Gubarev, Dec 23 2024

A309273 Number of semi-magic (only short lines are magic) knight's tours on a 4 X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 9, 16, 38, 104, 267, 608, 1444, 3480, 8221, 19212, 45262, 213280, 250247, 587072, 1378912, 3237456
Offset: 1

Views

Author

Awani Kumar, Jul 20 2019

Keywords

Examples

			Example 4 X 7 semi-magic knight's tour (only short lines are magic):
  +----+----+----+----+----+----+----+
  |  9 | 28 |  7 | 18 |  3 | 24 | 13 |
  +----+----+----+----+----+----+----+
  |  6 | 17 | 10 | 25 | 14 | 21 |  2 |
  +----+----+----+----+----+----+----+
  | 27 |  8 | 15 |  4 | 19 | 12 | 23 |
  +----+----+----+----+----+----+----+
  | 16 |  5 | 26 | 11 | 22 |  1 | 20 |
  +----+----+----+----+----+----+----+
.
Example 4 X 16 semi-magic knight's tour (only short lines are magic):
   1 62  3 36 29 38 19 58 25 44 17 56 23 52 15 54
  32 35 30 61  4 59 26 45 18 57 24 43 16 55 12 51
  63  2 33 28 37  6 39 20 47  8 41 22 49 10 53 14
  34 31 64  5 60 27 46  7 40 21 48  9 42 13 50 11
		

Crossrefs

A328341 Number of geometrically distinct open knight's tours on a 4 X n chessboard.

Original entry on oeis.org

0, 0, 3, 0, 22, 186, 1603, 7772, 47478, 303278, 1671273, 9121582, 50322028, 270896326, 1426536267, 7454807822, 38607660199, 197696949844, 1003736587788, 5060326202622, 25334034892953, 126024078250318, 623383415637750, 3067618264121349, 15022847233751804, 73245459228339114
Offset: 1

Views

Author

Andrew Howroyd, Oct 12 2019

Keywords

Examples

			a(3) = 3 because there are two symmetric and one asymmetric tour:
  +----+----+----+----+   +----+----+----+----+   +----+----+----+----+
  |  8 | 11 |  6 |  3 |   |  1 |  4 |  7 | 10 |   |  1 |  4 |  7 | 10 |
  +----+----+----+----+   +----+----+----+----+   +----+----+----+----+
  |  1 |  4 |  9 | 12 |   |  8 | 11 |  2 |  5 |   | 12 |  9 |  2 |  5 |
  +----+----+----+----+   +----+----+----+----+   +----+----+----+----+
  | 10 |  7 |  2 |  5 |   |  3 |  6 |  9 | 12 |   |  3 |  6 | 11 |  8 |
  +----+----+----+----+   +----+----+----+----+   +----+----+----+----+
		

Crossrefs

Formula

a(2*n) = A123936(2*n)/2; a(2*n-1) = (A123936(2*n-1) + A328340(n))/2.
Showing 1-10 of 13 results. Next