Original entry on oeis.org
0, 0, 4, 0, 41, 372, 3189, 15544, 94844, 606556, 3341926, 18243164, 100641235, 541792652, 2853058729, 14909615644, 77215251362, 395393899688, 2007472847598, 10120652405244, 50668068245114, 252048156500636, 1246766824001246, 6135236528242698, 30045694433419662
Offset: 1
Original entry on oeis.org
0, 0, 32, 0, 328, 2976, 25512, 124352, 758752, 4852448, 26735408, 145945312, 805129880, 4334341216, 22824469832, 119276925152, 617722010896, 3163151197504, 16059782780784, 80965219241952, 405344545960912
Offset: 1
A083386
Number (undirected) Hamiltonian paths in the 5 X n knight graph.
Original entry on oeis.org
0, 0, 0, 82, 864, 18784, 622868, 18061054, 264895640, 7886117822, 128411926952, 3611823644006, 56348098488396, 1548284436152798, 24535910156176100, 650456890341276338, 10364916108987670024, 267426031403733462626
Offset: 1
André Pönitz (poenitz(AT)htwm.de), Jun 11 2003
There are 864 knight's tours on a 5 X 5 chessboard.
- Jellis: http://home.freeuk.net/ktn/5a.htm [broken link ?]
A165134
Number of directed Hamiltonian paths in the n X n knight graph.
Original entry on oeis.org
1, 0, 0, 0, 1728, 6637920, 165575218320, 19591828170979904
Offset: 1
[No name given] (c.candide(AT)free.fr), Sep 04 2009
From _Gheorghe Coserea_, Oct 08 2016: (Start)
For n=5 the numbers in the table below give the number of knight's paths starting at the respective position on the 5 X 5 chessboard. In total there are a(5) = 304*4 + 56*8 + 64 = 1728 solutions.
[1] [2] [3] [4] [5]
[1] 304 0 56 0 304
[2] 0 56 0 56 0
[3] 56 0 64 0 56
[4] 0 56 0 56 0
[5] 304 0 56 0 304
(End)
- Stefan Behnel, The Knight's Paths
- A. Chernov, Open knight's tours
- Gheorghe Coserea, Solutions for 5x5 chessboard
- P. Hingston, G. Kendall, Enumerating knight's tours using an ant colony algorithm, The 2005 IEEE Congress on Evolutionary Computation, 2 (2006), 1003-1010
- G. Stertenbrink, Number of Knight's Tours
- Eric Weisstein's World of Mathematics, Hamiltonian Path
- Eric Weisstein's World of Mathematics, Knight Graph
a(7) from Guenter Stertenbrink, added by
Alex Chernov, Sep 01 2013
A118067
Number of (directed) Hamiltonian paths in the 3 X n knight graph.
Original entry on oeis.org
0, 0, 0, 16, 0, 0, 104, 792, 1120, 6096, 21344, 114496, 257728, 1292544, 3677568, 17273760, 46801984, 211731376, 611507360, 2645699504, 7725948608, 32451640000, 97488160384, 397346625760, 1214082434112, 4835168968464, 15039729265856, 58641619298000
Offset: 1
- Kraitchik, M., Mathematical Recreations. New York: W. W. Norton, pp. 264-5, 1942.
A123935
Number of (directed) Hamiltonian paths on the 4 X n knight graph.
Original entry on oeis.org
0, 0, 16, 0, 164, 1488, 12756, 62176, 379376, 2426224, 13367704, 72972656, 402564940, 2167170608, 11412234916, 59638462576, 308861005448, 1581575598752, 8029891390392, 40482609620976, 202672272980456, 1008192626002544, 4987067296004984, 24540946112970792
Offset: 1
A306281
Number of (undirected) Hamiltonian paths on the 6 X n knight graph.
Original entry on oeis.org
0, 0, 0, 744, 18784, 3318960, 389969466, 24964893804, 1770631206422, 143827657320448, 10668015492137018, 763955912402146956, 55382275594728895388, 4008456113318585117624, 285329658478008271167456, 20203324505809248032547768, 1425847547641332606081597198, 100103728161914529291271962728
Offset: 1
A306283
Number of (undirected) Hamiltonian paths on the 7 X n knight graph.
Original entry on oeis.org
0, 0, 52, 6378, 622868, 389969466, 82787609160, 20666425060328, 2903212163753000, 1025241126020698238
Offset: 1
A309273
Number of semi-magic (only short lines are magic) knight's tours on a 4 X n board.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 9, 16, 38, 104, 267, 608, 1444, 3480, 8221, 19212, 45262, 213280, 250247, 587072, 1378912, 3237456
Offset: 1
Example 4 X 7 semi-magic knight's tour (only short lines are magic):
+----+----+----+----+----+----+----+
| 9 | 28 | 7 | 18 | 3 | 24 | 13 |
+----+----+----+----+----+----+----+
| 6 | 17 | 10 | 25 | 14 | 21 | 2 |
+----+----+----+----+----+----+----+
| 27 | 8 | 15 | 4 | 19 | 12 | 23 |
+----+----+----+----+----+----+----+
| 16 | 5 | 26 | 11 | 22 | 1 | 20 |
+----+----+----+----+----+----+----+
.
Example 4 X 16 semi-magic knight's tour (only short lines are magic):
1 62 3 36 29 38 19 58 25 44 17 56 23 52 15 54
32 35 30 61 4 59 26 45 18 57 24 43 16 55 12 51
63 2 33 28 37 6 39 20 47 8 41 22 49 10 53 14
34 31 64 5 60 27 46 7 40 21 48 9 42 13 50 11
A328341
Number of geometrically distinct open knight's tours on a 4 X n chessboard.
Original entry on oeis.org
0, 0, 3, 0, 22, 186, 1603, 7772, 47478, 303278, 1671273, 9121582, 50322028, 270896326, 1426536267, 7454807822, 38607660199, 197696949844, 1003736587788, 5060326202622, 25334034892953, 126024078250318, 623383415637750, 3067618264121349, 15022847233751804, 73245459228339114
Offset: 1
a(3) = 3 because there are two symmetric and one asymmetric tour:
+----+----+----+----+ +----+----+----+----+ +----+----+----+----+
| 8 | 11 | 6 | 3 | | 1 | 4 | 7 | 10 | | 1 | 4 | 7 | 10 |
+----+----+----+----+ +----+----+----+----+ +----+----+----+----+
| 1 | 4 | 9 | 12 | | 8 | 11 | 2 | 5 | | 12 | 9 | 2 | 5 |
+----+----+----+----+ +----+----+----+----+ +----+----+----+----+
| 10 | 7 | 2 | 5 | | 3 | 6 | 9 | 12 | | 3 | 6 | 11 | 8 |
+----+----+----+----+ +----+----+----+----+ +----+----+----+----+
Showing 1-10 of 13 results.
Comments