cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123944 Numbers k such that A120301(k) differs from A058313(k).

Original entry on oeis.org

19, 28, 87, 99, 104, 196, 203, 210, 222, 228, 231, 238, 281, 328, 367, 499, 579, 620, 888, 967, 1036, 1147, 1204, 1352, 1372, 1403, 1419, 1430, 1470, 1481, 1498, 1503, 1666, 1693, 1907, 2211, 2359, 2440, 2499, 2521, 2556, 2678, 2948, 3407, 3467, 3504, 3537, 3892, 4046, 4079, 4108
Offset: 1

Views

Author

Alexander Adamchuk, Nov 22 2006

Keywords

Comments

The ratio A120301(n)/A058313(n) = 1 for most n.
The ratio A120301(a(n))/A058313(a(n)) = {5, 7, 11, 5, 13, 7, 17, 7, 37, 10, 29, 119, 47, 41, 23, 5, 29, 31, 37, 11, 37, 41, 43, 13, 7, 13, 71, 13, 49, 13, 7,...} is prime for the most a(n).
The first composite ratio A120301(a(n))/A058313(a(n)) corresponds to a(n) = a(29) = 1470 because A120301(1470)/A058313(1470) = 49 = 7^2. [Edited by Petros Hadjicostas, May 09 2020]

Crossrefs

Programs

  • Mathematica
    f=0; Do[f=f+(-1)^(n+1)*1/n; g=Abs[(2(-1)^n*n+(-1)^n-1)/4]*f; rfg=Numerator[g]/Numerator[f]; If[(rfg==1)==False, Print[{n,rfg}]], {n,1,15000}]
  • PARI
    isok(n) = my(sn = sum(k=1, n, (-1)^(k+1)/k)); numerator(sn) != abs(numerator((-1/4) * (2*(-1)^n*n + (-1)^n - 1)*sn));
    for (n=1, 4200, if (isok(n), print1(n, ", "))); \\ Michel Marcus, May 10 2020

Extensions

a(47)-a(51) from Petros Hadjicostas, May 09 2020