A123965 Triangle read by rows: T(0,0)=1; T(n,k) is the coefficient of x^k in the polynomial (-1)^n*p(n,x), where p(n,x) is the characteristic polynomial of the n X n tridiagonal matrix with 3's on the main diagonal and -1's on the super- and subdiagonal (n >= 1; 0 <= k <= n).
1, 3, -1, 8, -6, 1, 21, -25, 9, -1, 55, -90, 51, -12, 1, 144, -300, 234, -86, 15, -1, 377, -954, 951, -480, 130, -18, 1, 987, -2939, 3573, -2305, 855, -183, 21, -1, 2584, -8850, 12707, -10008, 4740, -1386, 245, -24, 1, 6765, -26195, 43398, -40426, 23373, -8715, 2100, -316, 27, -1
Offset: 0
Examples
Polynomials p(n, x): 1, 3 - x, 8 - 6*x + x^2, 21 - 25*x + 9*x^2 - x^3, 55 - 90*x + 51*x^2 - 12*x^3 + x^4, 144 - 300*x + 234*x^2 - 86*x^3 + 15*x^4 - x^5, 377 - 954*x + 951*x^2 - 480*x^3 + 130*x^4 - 18*x^5 + x^6, ... Triangle begins: 1; 3, -1; 8, -6, 1; 21, -25, 9, -1; 55, -90, 51, -12, 1; 144, -300, 234, -86, 15, -1; 377, -954, 951, -480, 130, -18, 1; 987, -2939, 3573, -2305, 855, -183, 21, -1; 2584, -8850, 12707, -10008, 4740, -1386, 245, -24, 1; 6765, -26195, 43398, -40426, 23373, -8715, 2100, -316, 27, -1; ...
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- J. Dombrowski, Tridiagonal matrix representations of cyclic self-adjoint operators, Pacif. J. Math. 114 (2): 324-334 (1984).
- Eric Weisstein's World of Mathematics, Tridiagonal Matrix.
Crossrefs
Programs
-
Magma
m:=12; p:= func< n,x | Evaluate(ChebyshevU(n+1), (3-x)/2) >; R
:=PowerSeriesRing(Integers(), m+2); A123965:= func< n,k | Coefficient(R!( p(n,x) ), k) >; [A123965(n,k): k in [0..n], n in [0..m]]; // G. C. Greubel, Aug 20 2023 -
Maple
with(linalg): a:=proc(i,j) if j=i then 3 elif abs(i-j)=1 then -1 else 0 fi end: for n from 1 to 10 do p[n]:=(-1)^n*charpoly(matrix(n,n,a),x) od: 1; for n from 1 to 10 do seq(coeff(p[n],x,j),j=0..n) od; # yields sequence in triangular form
-
Mathematica
(* First program *) T[n_, m_]:= If[n==m, 3, If[n==m-1 || n==m+1, -1, 0]]; M[d_]:= Table[T[n, m], {n,d}, {m,d}]; Table[M[d], {d,10}]; Table[Det[M[d] - x*IdentityMatrix[d]], {d,10}]; Join[{{3}}, Table[CoefficientList[Det[M[d] - x*IdentityMatrix[d]], x], {d,10}]]//Flatten (* Second program *) Table[CoefficientList[ChebyshevU[n, (3-x)/2], x], {n,0,12}]//Flatten (* G. C. Greubel, Aug 20 2023 *)
-
SageMath
def A123965(n,k): return ( chebyshev_U(n, (3-x)/2) ).series(x, n+2).list()[k] flatten([[A123965(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 20 2023
Formula
T(n, 0) = Fibonacci(2*n+2) = A001906(n+1).
Equals coefficients of the polynomials p(n,x) = (3-x)*p(n-1,x) - p(n-2,x), with p(0, x) = 1, p(1, x) = 3-x. - Roger L. Bagula, Oct 31 2006
From G. C. Greubel, Aug 20 2023: (Start)
T(n, k) = [x^k]( ChebyshevU(n, (3-x)/2) ).
Sum_{k=0..n} T(n, k) = n+1.
Sum_{k=0..n} (-1)^k*T(n, k) = A001353(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A000225(n+1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A000244(n). (End)
Extensions
Edited by N. J. A. Sloane, Nov 24 2006
Comments