cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A126124 Triangle, matrix inverse of A124733, companion to A123965.

Original entry on oeis.org

1, -2, 1, 5, -5, 1, -13, 19, -8, 1, 34, -65, 42, -11, 1, -89, 210, -183, 74, -14, 1, 233, -654, 717, -394, 115, -17, 1, -610, 1985, -2622, 1825, -725, 165, -20, 1, 1597, -5911, 9134, -7703, 3885, -1203, 224, -23, 1
Offset: 1

Views

Author

Gary W. Adamson, Dec 17 2006

Keywords

Comments

Left border (unsigned) = odd-indexed Fibonacci numbers. Left border (unsigned) of A123965 = even-indexed Fibonacci numbers.
Subtriangle of the triangle T(n,k) given by [0,-2,-1/2,-1/2,0,0,0,0,...] DELTA [1,0,1/2,-1/2,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 02 2007
Equals A129818*A130595 as lower triangular matrices. - Philippe Deléham, Oct 26 2007
Reversals = bisection of triangle A152063: (1; 1,2; 1,5,5; ...) having the following property: Product_{k=1..floor((n-1)/2)} (1 + 4*cos^2 k*2Pi/n) = the odd-indexed Fibonacci numbers. Example: x^3 - 8x^2 - 19x + 13 relates to the heptagon, and with k=1,2,3,..., the product = 13. - Gary W. Adamson, Aug 15 2010
Apart from signs, equals A123971.
Matrix inverse of A124733.

Examples

			First few rows of the triangle are:
    1;
   -2,    1;
    5,   -5,    1;
  -13,   19,   -8,    1;
   34,  -65,   42,  -11,    1;
  -89,  210, -183,   74,  -14,    1;
  ...
Triangle (n >= 0 and 0 <= k <= n) [0,-2,-1/2,-1/2,0,0,0,0,0,...] DELTA [1,0,1/2,-1/2,0,0,0,0,0,...] begins:
  1;
  0,    1;
  0,   -2,    1;
  0,    5,   -5,    1;
  0,  -13,   19,   -8,    1;
  0,   34,  -65,   42,  -11,    1;
  0,  -89,  210, -183,   74,  -14,    1;
  0,  233, -654,  717, -394,  115,  -17,    1;
		

Crossrefs

Formula

Sum_{k=1..n} (-1)^(n-k)*T(n,k) = A001835(n). - Philippe Deléham, Jul 14 2007
T(n,k) = T(n-1,k-1) - 3*T(n-1,k) - T(n-2,k). - Philippe Deléham, Dec 13 2011
T(n,k) = (-1)^(n+k)*Sum_{m=k..n} binomial(m,k)*binomial(m+n,2*m). - Wadim Zudilin, Jan 11 2012
G.f.: (1+x)*x*y/(1+3*x+x^2-x*y). - R. J. Mathar, Aug 11 2015

Extensions

Corrected by Philippe Deléham, Jul 14 2007
More terms from Philippe Deléham, Dec 13 2011

A124025 Duplicate of A123965.

Original entry on oeis.org

1, 3, -1, 8, -6, 1, 21, -25, 9, -1, 55, -90, 51, -12, 1, 144, -300, 234, -86, 15, -1, 377, -954, 951, -480, 130, -18, 1, 987, -2939, 3573, -2305, 855, -183, 21, -1, 2584, -8850, 12707, -10008, 4740, -1386, 245, -24, 1, 6765, -26195, 43398, -40426, 23373, -8715, 2100, -316, 27, -1, 17711, -76500, 143682
Offset: 1

Views

Author

Roger L. Bagula, Oct 31 2006

Keywords

References

  • Joanne Dombrowski, Tridiagonal matrix representations of cyclic selfadjoint operators, Pacific J. Math. 114, no. 2 (1984), 325-334

Crossrefs

Programs

  • Mathematica
    b[k_] = 3; a[k_] = -1; p[0, x] = 1; p[1, x] = (x - b[1])/a[1]; p[k_, x_] := p[k, x] = ((x - b[k - 1])*p[k - 1, x] - a[k - 2]*p[k - 2, x])/a[k - 1]; w = Table[CoefficientList[p[n, x], x], {n, 0, 10}]; Flatten[w]

Formula

Recursive polynomial from a tridiagonal matrix version of A123965 ( first number different): p(k, x) = ((x - b(k - 1))*p(k - 1, x) - a(k - 2)*p(k - 2, x))/a(n - 1); a(n)=-1;b(n)=3;

A091965 Triangle read by rows: T(n,k) = number of lattice paths from (0,0) to (n,k) that do not go below the line y=0 and consist of steps U=(1,1), D=(1,-1) and three types of steps H=(1,0) (left factors of 3-Motzkin steps).

Original entry on oeis.org

1, 3, 1, 10, 6, 1, 36, 29, 9, 1, 137, 132, 57, 12, 1, 543, 590, 315, 94, 15, 1, 2219, 2628, 1629, 612, 140, 18, 1, 9285, 11732, 8127, 3605, 1050, 195, 21, 1, 39587, 52608, 39718, 19992, 6950, 1656, 259, 24, 1, 171369, 237129, 191754, 106644, 42498, 12177, 2457
Offset: 0

Views

Author

Emeric Deutsch, Mar 13 2004

Keywords

Comments

T(n,0) = A002212(n+1), T(n,1) = A045445(n+1); row sums give A026378.
The inverse is A207815. - Gary W. Adamson, Dec 17 2006 [corrected by Philippe Deléham, Feb 22 2012]
Reversal of A084536. - Philippe Deléham, Mar 23 2007
Triangle T(n,k), 0 <= k <= n, read by rows given by T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 3*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + 3*T(n-1,k) + T(n-1,k+1) for k >= 1. - Philippe Deléham, Mar 27 2007
This triangle belongs to the family of triangles defined by T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
5^n = (n-th row terms) dot (first n+1 terms in (1,2,3,...)). Example for row 4: 5^4 = 625 = (137, 132, 57, 12, 1) dot (1, 2, 3, 4, 5) = (137 + 264 + 171 + 48 + 5) = 625. - Gary W. Adamson, Jun 15 2011
Riordan array ((1-3*x-sqrt(1-6*x+5*x^2))/(2*x^2), (1-3*x-sqrt(1-6*x+5*x^2))/(2*x)). - Philippe Deléham, Feb 19 2012

Examples

			Triangle begins:
     1;
     3,    1;
    10,    6,    1;
    36,   29,    9,    1;
   137,  132,   57,   12,    1;
   543,  590,  315,   94,   15,    1;
  2219, 2628, 1629,  612,  140,   18,    1;
T(3,1)=29 because we have UDU, UUD, 9 HHU paths, 9 HUH paths and 9 UHH paths.
Production matrix begins
  3, 1;
  1, 3, 1;
  0, 1, 3, 1;
  0, 0, 1, 3, 1;
  0, 0, 0, 1, 3, 1;
  0, 0, 0, 0, 1, 3, 1;
  0, 0, 0, 0, 0, 1, 3, 1;
  0, 0, 0, 0, 0, 0, 1, 3, 1;
  0, 0, 0, 0, 0, 0, 0, 1, 3, 1;
  0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 1;
- _Philippe Deléham_, Nov 07 2011
		

References

  • A. Nkwanta, Lattice paths and RNA secondary structures, DIMACS Series in Discrete Math. and Theoretical Computer Science, 34, 1997, 137-147.

Crossrefs

Programs

  • Mathematica
    nmax = 9; t[n_, k_] := ((k+1)*n!*Hypergeometric2F1[k+3/2, k-n, 2k+3, -4]) / ((k+1)!*(n-k)!); Flatten[ Table[ t[n, k], {n, 0, nmax}, {k, 0, n}]] (* Jean-François Alcover, Nov 14 2011, after Vladimir Kruchinin *)
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0,
    T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
    Table[T[n, k, 3, 3], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)
  • Maxima
    T(n,k):=(k+1)*sum((binomial(2*(m+1),m-k)*binomial(n,m))/(m+1),m,k,n); /* Vladimir Kruchinin, Oct 08 2011 */
    
  • Sage
    @CachedFunction
    def A091965(n,k):
        if n==0 and k==0: return 1
        if k<0 or k>n: return 0
        if k==0: return 3*A091965(n-1,0)+A091965(n-1,1)
        return A091965(n-1,k-1)+3*A091965(n-1,k)+A091965(n-1,k+1)
    for n in (0..7):
        [A091965(n,k) for k in (0..n)] # Peter Luschny, Nov 05 2012

Formula

G.f.: G = 2/(1 - 3*z - 2*t*z + sqrt(1-6*z+5*z^2)). Alternatively, G = M/(1 - t*z*M), where M = 1 + 3*z*M + z^2*M^2.
Sum_{k>=0} T(m, k)*T(n, k) = T(m+n, 0) = A002212(m+n+1). - Philippe Deléham, Sep 14 2005
The triangle may also be generated from M^n * [1,0,0,0,...], where M = an infinite tridiagonal matrix with 1's in the super and subdiagonals and [3,3,3,...] in the main diagonal. - Gary W. Adamson, Dec 17 2006
Sum_{k=0..n} T(n,k)*(k+1) = 5^n. - Philippe Deléham, Mar 27 2007
Sum_{k=0..n} T(n,k)*x^k = A117641(n), A033321(n), A007317(n), A002212(n+1), A026378(n+1) for x = -3, -2, -1, 0, 1 respectively. - Philippe Deléham, Nov 28 2009
T(n,k) = (k+1)*Sum_{m=k..n} binomial(2*(m+1),m-k)*binomial(n,m)/(m+1). - Vladimir Kruchinin, Oct 08 2011
The n-th row polynomial R(n,x) equals the n-th degree Taylor polynomial of the function (1 - x^2)*(1 + 3*x + x^2)^n expanded about the point x = 0. - Peter Bala, Sep 06 2022

A125662 A convolution triangle of numbers based on A001906 (even-indexed Fibonacci numbers).

Original entry on oeis.org

1, 3, 1, 8, 6, 1, 21, 25, 9, 1, 55, 90, 51, 12, 1, 144, 300, 234, 86, 15, 1, 377, 954, 951, 480, 130, 18, 1, 987, 2939, 3573, 2305, 855, 183, 21, 1, 2584, 8850, 12707, 10008, 4740, 1386, 245, 24, 1, 6765, 26195, 43398, 40426, 23373, 8715, 2100, 316, 27, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 28 2007

Keywords

Comments

Subtriangle of the triangle given by [0,3,-1/3,1/3,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,...] where DELTA is the operator defined in A084938. Unsigned version of A123965.
From Philippe Deléham, Feb 19 2012: (Start)
Riordan array (1/(1-3*x+x^2), x/(1-3*x+x^2)).
Equals A078812*A007318 as infinite lower triangular matrices.
Triangle of coefficients of Chebyshev's S(n,x+3) polynomials (exponents of x in increasing order). (End)
For 1 <= k <= n, T(n,k) equals the number of (n-1)-length words over {0,1,2,3} containing k-1 letters equal 3 and avoiding 01. - Milan Janjic, Dec 20 2016

Examples

			Triangle begins:
   1;
   3,  1;
   8,  6,  1;
  21, 25,  9,  1;
  55, 90, 51, 12,  1;
  ...
Triangle [0,3,-1/3,1/3,0,0,0,...] DELTA [1,0,0,0,0,0,...] begins:
  1;
  0,  1;
  0,  3,  1;
  0,  8,  6,  1;
  0, 21, 25,  9,  1;
  0, 55, 90, 51, 12,  1;
  ...
		

Crossrefs

Diagonal sums: A000244(powers of 3).
Row sums: A001353 (n+1).
Diagonals: A001906(n+1), A001871.
Cf. Triangle of coefficients of Chebyshev's S(n,x+k) polynomials: A207824, A207823, A125662, A078812, A101950, A049310, A104562, A053122, A207815, A159764, A123967 for k = 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5 respectively.

Programs

  • Magma
    m:=12;
    R:=PowerSeriesRing(Integers(), m+2);
    A125662:= func< n,k | Abs( Coefficient(R!( Evaluate(ChebyshevU(n+1), (3-x)/2) ), k) ) >;
    [A125662(n,k): k in [0..n], n in [0..m]]; // G. C. Greubel, Aug 20 2023
    
  • Mathematica
    With[{n = 9}, DeleteCases[#, 0] & /@ CoefficientList[Series[1/(1 - 3 x + x^2 - y x), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *)
    Table[Abs[CoefficientList[ChebyshevU[n,(x-3)/2], x]], {n,0,12}]//Flatten (* G. C. Greubel, Aug 20 2023 *)
  • SageMath
    def A125662(n,k): return abs( ( chebyshev_U(n, (3-x)/2) ).series(x, n+2).list()[k] )
    flatten([[A125662(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 20 2023

Formula

T(n,k) = T(n-1,k-1) + 3*T(n-1,k) - T(n-2,k); T(0,0)=1; T(n,k)=0 if k < 0 or k > n.
Sum_{k=0..n} T(n, k) = A001353(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A000244(n+1).
G.f.: 1/(1-3*x+x^2-y*x). - Philippe Deléham, Feb 19 2012
From G. C. Greubel, Aug 20 2023: (Start)
T(n, k) = abs( [x^k]( ChebyshevU(n, (3-x)/2) ) ).
Sum_{k=0..n} (-1)^k*T(n, k) = A000027(n+1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A000225(n). (End)

Extensions

a(45) corrected and a(51) added by Philippe Deléham, Feb 19 2012

A152063 Triangle read by rows. Coefficients of the Fibonacci product polynomials F(n) = Product_{k=1..(n - 1)/2} (1 + 4*cos^2(k*Pi/n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 5, 5, 1, 6, 8, 1, 8, 19, 13, 1, 9, 25, 21, 1, 11, 42, 65, 34, 1, 12, 51, 90, 55, 1, 14, 74, 183, 210, 89, 1, 15, 86, 234, 300, 144, 1, 17, 115, 394, 717, 654, 233, 6, 18, 130, 480, 951, 954, 377, 1, 20, 165, 725, 1825, 2622, 1985, 610, 1, 21, 183, 855
Offset: 1

Views

Author

Gary W. Adamson and Roger L. Bagula, Nov 22 2008

Keywords

Comments

The triangle A125076 is formed by reading upward sloping diagonals. - Gary W. Adamson, Nov 26 2008
Bisection of the triangle: odd-indexed rows are reversals of the rows of A126124, even-indexed rows are the reversals of the rows of A123965. - Gary W. Adamson, Aug 15 2010

Examples

			First few rows of the triangle are:
1;
1;
1, 2;
1, 3;
1, 5, 5;
1, 6, 8;
1, 8, 19, 13;
1, 9, 25, 21;
1, 11, 42, 65, 34;
1, 12, 51, 90, 55;
1, 14, 74, 183, 210, 89;
1, 15, 86, 234, 300, 144;
1, 17, 115, 394, 717, 654, 233;
1, 18, 130, 480, 951, 954, 377;
1, 20, 165, 725, 1825, 2622, 1985, 610;
1, 21, 183, 855, 2305, 3573, 2939, 987;
...
By row, alternate signs (+,-,+,-,...) with descending exponents. Rows with n terms have exponents (n-1), (n-2), (n-3),...;
Example: There are two rows with 4 terms corresponding to the polynomials
x^3 - 8x^2 + 19x - 13 (roots associated with the heptagon); and
x^3 - 9x^2 + 25x - 21 (roots associated with the 9-gon (nonagon)).
		

Crossrefs

Programs

  • Maple
    P := proc(n) option remember; if n < 5 then return
    ifelse(n < 3, 1, ifelse(n = 3, 1 + 2*q, 1 + 3*q)) fi;
    (1 + 3*q)*P(n - 2) - q^2*P(n - 4) end:
    T := n -> local k; seq(coeff(P(n), q, k), k = 0..(n-1)/2):
    for n from 1 to 12 do T(n) od;  # (after F. Chapoton)  Peter Luschny, May 27 2024
    # Alternative:
    P := n -> local k; add(binomial(n-k,k)*(1+x)^(floor(n/2)-k)*x^k, k=0..floor(n/2)):
    T := n -> local k; seq(coeff(P(n), x, k), k = 0..n/2):
    for n from 0 to 12 do T(n) od; # (after F. Chapoton) Peter Luschny, May 28 2024

Formula

Recurrence (as monic polynomials) P(n+4) = (1 + 3*q)*P(n+2) - q^2*P(n). - F. Chapoton, May 27 2024
As monic polynomials, these are the numerators of the polynomials from A011973 evaluated at 1/(1+q). - F. Chapoton, May 28 2024
Showing 1-5 of 5 results.