A123988 Primes p such that 2^x == 3 (mod p) has no solutions.
3, 7, 17, 31, 41, 43, 73, 79, 89, 103, 109, 113, 127, 137, 151, 157, 199, 223, 229, 233, 241, 251, 257, 271, 277, 281, 283, 331, 337, 353, 367, 397, 401, 433, 439, 449, 457, 463, 487, 521, 569, 571, 593, 601, 607, 617, 631, 641, 673, 683, 691, 727, 733, 739, 751, 761, 809, 811, 823, 857, 881, 911
Offset: 1
Keywords
Links
- J. K. Crump, Number Theory Web.
Programs
-
Magma
lst:=[3]; for p in [5..911 by 2] do if IsPrime(p) then t:=0; e:=Ceiling(Log(2, p+1)); for x in [e..p-2] do if 2^x mod p eq 3 then t:=1; break; end if; end for; if t eq 0 then Append(~lst, p); end if; end if; end for; lst; // Arkadiusz Wesolowski, Jan 12 2021
Extensions
Edited by Max Alekseyev, Jan 14 2007
Corrected by Max Alekseyev, Jun 08 2011
Corrected by Arkadiusz Wesolowski, Jan 12 2021
Comments