A124029 Triangle T(n,k) with the coefficient [x^k] of the characteristic polynomial of the following n X n triangular matrix: 4 on the main diagonal, -1 of the two adjacent subdiagonals, 0 otherwise.
1, 4, -1, 15, -8, 1, 56, -46, 12, -1, 209, -232, 93, -16, 1, 780, -1091, 592, -156, 20, -1, 2911, -4912, 3366, -1200, 235, -24, 1, 10864, -21468, 17784, -8010, 2120, -330, 28, -1, 40545, -91824, 89238, -48624, 16255, -3416, 441, -32, 1, 151316, -386373, 430992, -275724, 111524, -29589, 5152, -568, 36, -1
Offset: 0
Examples
Triangle begins as: 1; 4, -1; 15, -8, 1; 56, -46, 12, -1; 209, -232, 93, -16, 1; 780, -1091, 592, -156, 20, -1; 2911, -4912, 3366, -1200, 235, -24, 1; 10864, -21468, 17784, -8010, 2120, -330, 28, -1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- Joanne Dombrowski, Tridiagonal matrix representations of cyclic self-adjoint operators, Pacific J. Math. 114, no. 2 (1984), 325-334.
Crossrefs
Programs
-
Magma
m:=12; R
:=PowerSeriesRing(Integers(), m+2); A124029:= func< n,k | Coefficient(R!( Evaluate(ChebyshevU(n+1), (4-x)/2) ), k) >; [A124029(n,k): k in [0..n], n in [0..m]]; // G. C. Greubel, Aug 20 2023 -
Maple
A123966x := proc(n,x) local A,r,c ; A := Matrix(1..n,1..n) ; for r from 1 to n do for c from 1 to n do A[r,c] :=0 ; if r = c then A[r,c] := A[r,c]+4 ; elif abs(r-c)= 1 then A[r,c] := A[r,c]-1 ; end if; end do: end do: (-1)^n*LinearAlgebra[CharacteristicPolynomial](A,x) ; end proc; A123966 := proc(n,k) coeftayl( A123966x(n,x),x=0,k) ; end proc: seq(seq(A123966(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Dec 06 2011
-
Mathematica
(* Matrix version*) k = 4; T[n_, m_, d_]:= If[n==m, k, If[n==m-1 || n==m+1, -1, 0]]; M[d_]:= Table[T[n, m, d], {n,d}, {m,d}]; Table[M[d], {d,10}] Table[Det[M[d]], {d,10}] Table[Det[M[d] - x*IdentityMatrix[d]], {d,10}] Join[{M[1]}, Table[CoefficientList[Det[M[ d] - x*IdentityMatrix[d]], x], {d,10}]]//Flatten (* Recursive Polynomial form*) p[0, x]= 1; p[1, x]= (4-x); p[k_, x_]:= p[k, x]= (4-x)*p[k-1, x] - p[k -2, x]; Table[CoefficientList[p[n, x], x], {n, 0, 10}]//Flatten (* Additional program *) Table[CoefficientList[ChebyshevU[n, (4-x)/2], x], {n,0,12}]//Flatten (* G. C. Greubel, Aug 20 2023 *)
-
SageMath
def A124029(n,k): return ( chebyshev_U(n, (4-x)/2) ).series(x, n+2).list()[k] flatten([[A124029(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 20 2023
Formula
T(n, k) = [x^k]( p(n, x) ), where p(n, x) = (4-x)*p(n-1, x) - p(n-2, x), p(0, x) = 1, p(1, x) = 4-x.
From G. C. Greubel, Aug 20 2023: (Start)
T(n, k) = [x^k]( ChebyshevU(n, (4-x)/2) ).
Sum_{k=0..n} T(n, k) = A001906(n+1).
Sum_{k=0..n} (-1)^k*T(n, k) = A004254(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A007070(n).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A000302(n).
T(n, n) = (-1)^n.
T(n, n-1) = 4*A181983(n), n >= 1.
T(n, n-2) = (-1)^n*A139278(n-1), n >= 2.
T(n, 0) = A001353(n+1). (End)
Comments