A123966
Triangle A124029 with the (0,0) entry replaced by 4.
Original entry on oeis.org
4, 4, -1, 15, -8, 1, 56, -46, 12, -1, 209, -232, 93, -16, 1, 780, -1091, 592, -156, 20, -1, 2911, -4912, 3366, -1200, 235, -24, 1, 10864, -21468, 17784, -8010, 2120, -330, 28, -1, 40545, -91824, 89238, -48624, 16255, -3416, 441, -32, 1, 151316, -386373, 430992, -275724, 111524, -29589, 5152, -568, 36
Offset: 0
4;
4, -1;
15, -8, 1;
56, -46,12, -1;
209, -232, 93, -16, 1;
780, -1091, 592, -156, 20, -1;
2911, -4912, 3366, -1200, 235, -24, 1;
10864, -21468, 17784, -8010, 2120, -330, 28, -1;
-
Clear[M, T, d, a, x]; T[n_, m_] = If[ n == m, 4, If[n == m - 1 || n == m + 1, -1, 0]]; M[d_] := Table[T[n, m], {n, 1, d}, {m, 1, d}]; Table[M[d], {d, 1, 10}]; Table[Det[M[d] - x*IdentityMatrix[d]], {d, 1, 10}]; a = Join[{{3}}, Table[CoefficientList[Det[M[d] - x*IdentityMatrix[d]], x], {d, 1, 10}]]; Flatten[a]
A159764
Riordan array (1/(1+4x+x^2), x/(1+4x+x^2)).
Original entry on oeis.org
1, -4, 1, 15, -8, 1, -56, 46, -12, 1, 209, -232, 93, -16, 1, -780, 1091, -592, 156, -20, 1, 2911, -4912, 3366, -1200, 235, -24, 1, -10864, 21468, -17784, 8010, -2120, 330, -28, 1, 40545, -91824, 89238, -48624, 16255, -3416, 441, -32, 1, -151316, 386373
Offset: 0
Triangle begins
1;
-4, 1;
15, -8, 1;
-56, 46, -12, 1;
209, -232, 93, -16, 1;
-780, 1091, -592, 156, -20, 1;
2911, -4912, 3366, -1200, 235, -24, 1;
Triangle (0, -4, 1/4, -1/4, 0, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins:
1;
0, 1;
0, -4, 1;
0, 15, -8, 1;
0, -56, 46, -12, 1;
0, 209, -232, 93, -16, 1;
Cf. Triangle of coefficients of Chebyshev's S(n,x+k) polynomials :
A207824,
A207823,
A125662,
A078812,
A101950,
A049310,
A104562,
A053122,
A207815,
A159764,
A123967 for k = 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5 respectively.
-
CoefficientList[CoefficientList[Series[1/(1 + 4*x + x^2 - y*x), {x, 0, 10}, {y, 0, 10}], x], y]//Flatten (* G. C. Greubel, May 21 2018 *)
-
@CachedFunction
def A159764(n,k):
if n< 0: return 0
if n==0: return 1 if k == 0 else 0
return A159764(n-1,k-1)-A159764(n-2,k)-4*A159764(n-1,k)
for n in (0..9): [A159764(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
A207823
Triangle of coefficients of Chebyshev's S(n,x+4) polynomials (exponents of x in increasing order).
Original entry on oeis.org
1, 4, 1, 15, 8, 1, 56, 46, 12, 1, 209, 232, 93, 16, 1, 780, 1091, 592, 156, 20, 1, 2911, 4912, 3366, 1200, 235, 24, 1, 10864, 21468, 17784, 8010, 2120, 330, 28, 1, 40545, 91824, 89238, 48624, 16255, 3416, 441, 32, 1, 151316, 386373, 430992, 275724, 111524, 29589, 5152, 568, 36, 1
Offset: 0
Triangle begins:
1
4, 1
15, 8, 1
56, 46, 12, 1
209, 232, 93, 16, 1
780, 1091, 592, 156, 20, 1
2911, 4912, 3366, 1200, 235, 24, 1
10864, 21468, 17784, 8010, 2120, 330, 28, 1
40545, 91824, 89238, 48624, 16255, 3416, 441, 32, 1
151316, 386373, 430992, 275724, 111524, 29589, 5152, 568, 36, 1
...
Triangle (0, 4, -1/4, 1/4, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins:
1
0, 1
0, 4, 1
0, 15, 8, 1
0, 56, 46, 12, 1
0, 209, 232, 93, 16, 1
...
Cf. Triangle of coefficients of Chebyshev's S(n,x+k) polynomials:
A207824 (k = 5),
A207823 (k = 4),
A125662 (k = 3),
A078812 (k = 2),
A101950 (k = 1),
A049310 (k = 0),
A104562 (k = -1),
A053122 (k = -2),
A207815 (k = -3),
A159764 (k = -4),
A123967 (k = -5).
-
With[{n = 9}, DeleteCases[#, 0] & /@ CoefficientList[Series[1/(1 - 4 x + x^2 - y x), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *)
Showing 1-3 of 3 results.
Comments