A238731
Riordan array ((1-2*x)/(1-3*x+x^2), x/(1-3*x+x^2)).
Original entry on oeis.org
1, 1, 1, 2, 4, 1, 5, 13, 7, 1, 13, 40, 33, 10, 1, 34, 120, 132, 62, 13, 1, 89, 354, 483, 308, 100, 16, 1, 233, 1031, 1671, 1345, 595, 147, 19, 1, 610, 2972, 5561, 5398, 3030, 1020, 203, 22, 1, 1597, 8495, 17984, 20410, 13893, 5943, 1610, 268, 25, 1, 4181
Offset: 0
Triangle begins:
1;
1, 1;
2, 4, 1;
5, 13, 7, 1;
13, 40, 33, 10, 1;
34, 120, 132, 62, 13, 1;
89, 354, 483, 308, 100, 16, 1;
233, 1031, 1671, 1345, 595, 147, 19, 1;...
Triangle (0, 1, 1, 1, 0, 0, 0, ...) DELTA (1, 0, 2, -2, 0, 0, ...) begins:
1;
0, 1;
0, 1, 1;
0, 2, 4, 1;
0, 5, 13, 7, 1;
0, 13, 40, 33, 10, 1;
0, 34, 120, 132, 62, 13, 1;
0, 89, 354, 483, 308, 100, 16, 1;
0, 233, 1031, 1671, 1345, 595, 147, 19, 1;...
-
(* The function RiordanArray is defined in A256893. *)
RiordanArray[(1-2#)/(1-3#+#^2)&, x/(1-3#+#^2)&, 10] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
A126126
Triangle read by rows: matrix inverse of A110877.
Original entry on oeis.org
1, -1, 1, 2, -4, 1, -5, 13, -7, 1, 13, -40, 33, -10, 1, -34, 120, -132, 62, -13, 1, 89, -354, 483, -308, 100, -16, 1, -233, 1031, -1671, 1345, -595, 147, -19, 1, 610, -2972, 5561, -5398, 3030, -1020, 203, -22, 1, -1597, 8495, -17984, 20410, -13893, 5943, -1610, 268, -25, 1, 4181, -24110, 56886, -73816, 59059, -30702, 10570, -2392, 342, -28, 1
Offset: 0
First few rows of the triangle are:
1;
-1, 1;
2, -4, 1;
-5, 13, -7, 1;
13, -40, 33, -10, 1;
-34, 120, -132, 62, -13, 1
...
A238846
Expansion of (1-2*x)/(1-3*x+x^2)^2.
Original entry on oeis.org
1, 4, 13, 40, 120, 354, 1031, 2972, 8495, 24110, 68016, 190884, 533293, 1484020, 4115185, 11375764, 31358376, 86223942, 236540915, 647556620, 1769374931, 4826148314, 13142564448, 35736448200, 97037995225, 263156279524, 712795854421, 1928547574912, 5212430732760
Offset: 0
a(0) = 1*1 = 1;
a(1) = 1*3 + 1*1 = 4;
a(2) = 1*8 + 1*3 + 2*1 = 13;
a(3) = 1*21 + 1*8 + 2*3 + 5*1 = 40;
a(4) = 1*55 + 1*21 + 2*8 + 5*3 + 13*1 = 120; etc. (from first recurrence formula).
a(0) = 3*0 - 0 + 1 = 1;
a(1) = 3*1 - 0 + 1 = 4;
a(2) = 3*4 - 1 + 2 = 13;
a(3) = 3*13 - 4 + 5 = 40;
a(4) = 3*40 - 13 + 13 = 120; etc (from second recurrence formula).
G.f. = 1 + 4*x + 13*x^2 + 40*x^3 + 120*x^4 + 354*x^5 + 1031*x^6 + ... - _Michael Somos_, Nov 23 2021
- Michael De Vlieger, Table of n, a(n) for n = 0..2385
- Sergi Elizalde, Rigoberto Flórez, and José Luis Ramírez, Enumerating symmetric peaks in non-decreasing Dyck paths, Ars Mathematica Contemporanea (2021).
- David Eppstein, Non-crossing Hamiltonian Paths and Cycles in Output-Polynomial Time, arXiv:2303.00147 [cs.CG], 2023, p. 20.
- Rigoberto Flórez, Leandro Junes, Luisa M. Montoya, and José L. Ramírez, Counting Subwords in Non-Decreasing Dyck Paths, J. Int. Seq. (2025) Vol. 28, Art. No. 25.1.6. See pp. 6, 15, 17, 19.
- Valentin Ovsienko, Shadow sequences of integers, from Fibonacci to Markov and back, arXiv:2111.02553 [math.CO], 2021.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6,-1).
-
LinearRecurrence[{6, -11, 6, -1}, {1, 4, 13, 40}, 30] (* Bruno Berselli, Mar 06 2014 *)
a[ n_] := If[n < 0, SeriesCoefficient[ x^3*(2 - x)/(1 - 3*x + x^2)^2, {x, 0, -n}], SeriesCoefficient[ (1 - 2*x)/(1 - 3*x + x^2)^2, {x, 0, n}]]; (* Michael Somos, Nov 23 2021 *)
-
{a(n) = if(n<0, polcoeff( x^3*(2-x)/(1-3*x+x^2)^2 + x*O(x^-n), -n), polcoeff( (1-2*x)/(1-3*x+x^2)^2 + x*O(x^n), n))}; /* Michael Somos, Nov 23 2021 */
Showing 1-3 of 3 results.
Comments