cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124051 Quasi-mirror of A062196 formatted as a triangular array.

Original entry on oeis.org

3, 6, 8, 10, 30, 15, 15, 80, 90, 24, 21, 175, 350, 210, 35, 28, 336, 1050, 1120, 420, 48, 36, 588, 2646, 4410, 2940, 756, 63, 45, 960, 5880, 14112, 14700, 6720, 1260, 80, 55, 1485, 11880, 38808, 58212, 41580, 13860, 1980, 99, 66, 2200, 22275, 95040, 194040, 199584, 103950, 26400, 2970, 120
Offset: 0

Views

Author

Zerinvary Lajos, Nov 03 2006

Keywords

Examples

			Triangle begins as:
   3;
   6,    8;
  10,   30,    15;
  15,   80,    90,    24;
  21,  175,   350,   210,     35;
  28,  336,  1050,  1120,    420,     48;
  36,  588,  2646,  4410,   2940,    756,     63;
  45,  960,  5880, 14112,  14700,   6720,   1260,    80;
  55, 1485, 11880, 38808,  58212,  41580,  13860,  1980,   99;
  66, 2200, 22275, 95040, 194040, 199584, 103950, 26400, 2970, 120;
		

Crossrefs

Columns k: A000217(n+2) (k=0), A002417(n+1) (k=1), A001297(n) (k=2), A105946(n-2) (k=3), A105947(n-3) (k=4), A105948(n-4) (k=5), A107319(n-5) (k=6).
Diagonals: A005563(n+1) (k=n), A033487(n) (k=n-1), A027790(n) (k=n-2), A107395(n-3) (k=n-3), A107396(n-4) (k=n-4), A107397(n-5) (k=n-5), A107398(n-6) (k=n-6), A107399(n-7) (k=n-7).
Sums: A322938(n+1) (row).

Programs

  • Magma
    A124051:= func< n,k | Binomial(n+1,n-k+1)*Binomial(n+3,n-k+1) >;
    [A124051(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 07 2025
    
  • Maple
    for n from 0 to 10 do seq(binomial(n,i-1)*binomial(n+2,n+1-i), i=1..n ) od;
  • Mathematica
    A124051[n_, k_]:= Binomial[n+1,n-k+1]*Binomial[n+3,n-k+1];
    Table[A124051[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 07 2025 *)
  • SageMath
    def A124051(n,k): return binomial(n+1,n-k+1)*binomial(n+3,n-k+1)
    print(flatten([[A124051(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Feb 07 2025

Formula

From G. C. Greubel, Feb 07 2025: (Start)
T(n, k) = binomial(n+1, n-k+1)*binomial(n+3, n-k+1).
T(2*n, n) = (1/2)*A000894(n) + (5/2)*[n=0].
Sum_{k=0..n} (-1)^k*T(n, k) = (1/2)*( (1+(-1)^n)*(-1)^(n/2)*A286033((n+4)/2) + (1-(-1)^n)*((-1)^((n+1)/2)*A000108((n+1)/2) - 1) ). (End)