A124093 Triangular numbers alternating with squares.
0, 0, 1, 1, 3, 4, 6, 9, 10, 16, 15, 25, 21, 36, 28, 49, 36, 64, 45, 81, 55, 100, 66, 121, 78, 144, 91, 169, 105, 196, 120, 225, 136, 256, 153, 289, 171, 324, 190, 361, 210, 400, 231, 441, 253, 484, 276, 529, 300, 576, 325, 625, 351, 676, 378, 729, 406, 784, 435, 841
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1).
Programs
-
Maple
a:=proc(n) if n mod 2 = 0 then n*(n+2)/8 else (n-1)^2/4 fi end: seq(a(n),n=0..70); # Emeric Deutsch, Nov 29 2006
-
Mathematica
tr=Table[{k(k+1)/2,k^2},{k,0,100}]//Flatten (Seidov) With[{nn=30},Riffle[Accumulate[Range[0,nn]],Range[0,nn]^2]] (* Harvey P. Dale, Jul 13 2014 *)
-
PARI
concat([0,0], Vec(-x^2*(x^3+x+1)/((x-1)^3*(x+1)^3) + O(x^100))) \\ Colin Barker, May 28 2015
Formula
a(n) = n(n+2)/8 if n is even; a(n) = (n-1)^2/4 if n is odd (n>=0). - Emeric Deutsch, Nov 29 2006
a(n) = (3*n^2-2*n+2-(n^2-6*n+2)*(-1)^n)/16. - Luce ETIENNE, May 28 2015
a(n) = 3*a(n-2)-3*a(n-4)+a(n-6) for n>5. - Colin Barker, May 28 2015
G.f.: -x^2*(x^3+x+1) / ((x-1)^3*(x+1)^3). - Colin Barker, May 28 2015
Extensions
More terms from Zak Seidov, Nov 28 2006
More terms from Emeric Deutsch, Nov 29 2006