cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A164568 Primes p such that 9*p-10 and 9*p+10 are prime numbers.

Original entry on oeis.org

3, 7, 11, 13, 29, 41, 53, 59, 67, 97, 109, 179, 223, 239, 263, 353, 389, 409, 461, 463, 557, 601, 613, 631, 673, 757, 773, 839, 857, 937, 967, 977, 1019, 1163, 1277, 1301, 1327, 1471, 1627, 1753, 1789, 1877, 1879, 2027, 2087, 2237, 2251, 2269, 2311, 2351
Offset: 1

Views

Author

Keywords

Examples

			9*3-10=17, 9*3+10=37, ...
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2500) |IsPrime(9*p-10) and IsPrime(9*p+10)]; // Vincenzo Librandi, Jun 30 2016
  • Maple
    filter:= n -> isprime(n) and isprime(9*n-10) and isprime(9*n+10):
    select(filter, [seq(i,i=3..1000,2)]); # Robert Israel, Jun 29 2016
  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[9*p-10]&&PrimeQ[9*p+10],AppendTo[lst,p]],{n,2*6!}];lst
    Select[Prime[Range[400]], PrimeQ[9 # - 10] && PrimeQ[9 # + 10] &] (* Vincenzo Librandi, Jun 30 2016 *)
    Select[Prime[Range[400]],AllTrue[9#+{10,-10},PrimeQ]&] (* Harvey P. Dale, Dec 23 2023 *)
  • PARI
    forprime(p=3,1e4,if(isprime(9*p-10)&&isprime(9*p+10),print1(p",")))
    

Extensions

Edited by Charles R Greathouse IV, Nov 02 2009

A164567 Primes p such that 5*p-6 and 5*p+6 are prime numbers.

Original entry on oeis.org

5, 7, 13, 19, 29, 37, 41, 47, 79, 83, 97, 103, 149, 163, 211, 257, 293, 313, 359, 379, 401, 421, 449, 509, 523, 541, 547, 601, 643, 653, 673, 691, 701, 733, 821, 853, 883, 911, 929, 937, 1009, 1129, 1171, 1217, 1367, 1381, 1423, 1511, 1567, 1619, 1637, 1787
Offset: 1

Views

Author

Keywords

Comments

Primes of the form A087681(k)/5, any k [R. J. Mathar, Sep 17 2009]

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[5*p-6]&&PrimeQ[5*p+6],AppendTo[lst,p]], {n,6!}];lst
    Select[Prime[Range[300]],AllTrue[5#+{6,-6},PrimeQ]&] (* Harvey P. Dale, Jun 09 2022 *)

A164570 Primes p such that 8*p-3 and 8*p+3 are also prime numbers.

Original entry on oeis.org

2, 5, 7, 13, 47, 103, 107, 127, 163, 233, 293, 337, 383, 433, 443, 467, 503, 673, 677, 733, 797, 877, 1087, 1093, 1153, 1217, 1223, 1307, 1637, 1933, 2053, 2087, 2137, 2423, 2477, 2543, 2633, 2687, 2857, 2917, 3163, 3373, 3407, 3467, 3767, 3793, 3877
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A023229. [R. J. Mathar, Aug 26 2009]
Primes of the form A087695(k)/8. [R. J. Mathar, Aug 26 2009]

Examples

			For p=2, 8*2-3=13 and 8*2+3=19 are prime numbers, which adds p=2 to the sequence
For p=5, 8*5-3=37 and 8*5+3=43 are prime numbers, which adds p=5 to the sequence.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(3000) | IsPrime(8*p-3) and IsPrime(8*p+3)]; // Vincenzo Librandi, Apr 09 2013
  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[8*p-3]&&PrimeQ[8*p+3],AppendTo[lst,p]], {n,7!}];lst
    Select[Prime[Range[1000]], And@@PrimeQ/@{8 # + 3, 8 # - 3}&] (* Vincenzo Librandi, Apr 09 2013 *)
    Select[Prime[Range[1000]],AllTrue[8#+{3,-3},PrimeQ]&] (* Harvey P. Dale, May 05 2023 *)

Extensions

Comments turned into examples by R. J. Mathar, Aug 26 2009

A171518 Primes p such that 3*p-+8 are primes.

Original entry on oeis.org

5, 7, 13, 17, 53, 73, 83, 113, 127, 157, 193, 223, 277, 347, 367, 433, 613, 647, 673, 743, 797, 907, 937, 1117, 1217, 1373, 1427, 1483, 1543, 1597, 1637, 1667, 1877, 1933, 2027, 2237, 2297, 2447, 2647, 2687, 2843, 3083, 3137, 3613, 3797, 4073, 4463, 4483
Offset: 1

Views

Author

Keywords

Examples

			5 is in the sequence since 3*5-8=7 and 3*5+8=23 are primes.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[7! ]],PrimeQ[3*#-8]&&PrimeQ[3*#+8]&]
    Select[Prime[Range[700]],AllTrue[3#+{8,-8},PrimeQ]&] (* Harvey P. Dale, Feb 10 2025 *)
Showing 1-4 of 4 results.