cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124187 Numbers n such that 1 + n + n^3 + n^5 + n^7 + n^9 + n^11 + ... + n^33 + n^35 is prime.

Original entry on oeis.org

1, 7, 10, 17, 52, 69, 108, 161, 173, 231, 306, 330, 338, 352, 416, 582, 584, 593, 635, 767, 834, 855, 868, 892, 927, 944, 950, 1044, 1060, 1203, 1242, 1299, 1302, 1509, 1520, 1551, 1637, 1972, 2067, 2078, 2135, 2303, 2310, 2366, 2416, 2511, 2514, 2556, 2581
Offset: 1

Views

Author

Artur Jasinski, Dec 13 2006

Keywords

Crossrefs

Cf. A049407.

Programs

  • Magma
    [n: n in [0..4000] | IsPrime(1+n*(1+n^2)*(1+n^4+n^8)*(1+n^12+n^24))]; // Vincenzo Librandi, Jun 27 2014
  • Maple
    a:= proc(n) option remember; local k;
          for k from 1+ a(n-1) while
            not isprime(1+(k^37-k)/(k^2-1)) do od; k
        end: a(1):=1:
    seq(a(n), n=1..30);  # Alois P. Heinz, Jun 26 2014
  • Mathematica
    Do[If[PrimeQ[1+n+n^3+n^5+n^7+n^9+n^11+n^13+n^15+n^17+n^19+n^21+n^23 +n^25 +n^27 +n^29+n^31+n^33+n^35],Print[n]],{n,1,2400}]
    Select[Range[5000], PrimeQ[Total[#^Range[1, 35, 2]] + 1] &] (* Vincenzo Librandi, Jun 27 2014 *)
  • PARI
    for(n=1,10^4,if(ispseudoprime(sum(i=0,17,n^(2*i+1))+1),print1(n,", "))) \\ Derek Orr, Jun 24 2014
    

Extensions

a(45) and beyond from Derek Orr, Jun 24 2014