cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124293 Number of free generators of degree n of symmetric polynomials in 5-noncommuting variables.

Original entry on oeis.org

1, 1, 2, 6, 22, 91, 406, 1896, 9093, 44279, 217500, 1073657, 5314870, 26352107, 130778039, 649352929, 3225196431, 16021584848, 79597062632, 395469296912, 1964908443531, 9762920818182, 48508934285620, 241027326818991, 1197601448443963, 5950578465799856
Offset: 1

Views

Author

Mike Zabrocki, Oct 24 2006

Keywords

Comments

Also the number of non-splitable set partitions (see Bergeron et al. reference) of length <=5

Crossrefs

Programs

  • Magma
    I:=[1,1,2,6]; [n le 4 select I[n] else 10*Self(n-1)-32*Self(n-2)+37*Self(n-3)-11*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jan 09 2016
  • Maple
    a:= n-> (Matrix([[6,2,1,1]]). Matrix(4, (i,j)-> if i=j-1 then 1 elif j=1 then [10, -32, 37, -11][i] else 0 fi)^(n-1))[1,4]: seq(a(n), n=1..30); # Alois P. Heinz, Sep 05 2008
  • Mathematica
    LinearRecurrence[{10, -32, 37, -11}, {1, 1, 2, 6}, 30] (* Jean-François Alcover, Jan 08 2016 *)

Formula

O.g.f. (1-9q+24q^2-19q^3)/(1-10q+32q^2-37q^3+11q^4) = (1 - 1/(sum_{k=0}^5 q^k/(prod_{i=1}^k (1-i*q))))/q a(n) = add( A055105(n,k), k=1..5) = add(A055106(n,k),k=1..4)