cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124303 Number of set partitions of length <= 4; sum of first 4 columns of triangle of Stirling numbers of 2nd kind; dimension of space of symmetric polynomials in 4 noncommuting variables.

Original entry on oeis.org

1, 1, 2, 5, 15, 51, 187, 715, 2795, 11051, 43947, 175275, 700075, 2798251, 11188907, 44747435, 178973355, 715860651, 2863377067, 11453377195, 45813246635, 183252462251, 733008800427, 2932033104555, 11728128223915, 46912504507051, 187650001250987
Offset: 0

Views

Author

Mike Zabrocki, Oct 25 2006

Keywords

Comments

Apart from initial term, same as A007581. - Valery A. Liskovets, Nov 16 2006

Examples

			Number of set partitions of {1,2,3,4,5,6} are given by A008277(6,k) = 1, 31, 90, 65, 15, 1 and hence a(6) = 1+31+90+65 = 187.
		

Crossrefs

A row of the array in A278984.

Programs

  • Maple
    a:=proc(n); if n<4 then [1,1,2,5][n+1]; else 7*a(n-1)-14*a(n-2)+8*a(n-3); fi; end:
  • Mathematica
    Join[{1}, LinearRecurrence[{7, -14, 8}, {1, 2, 5}, 26]] (* Jean-François Alcover, Nov 20 2017 *)
    Table[Sum[StirlingS2[n,k],{k,0,4}],{n,0,40}] (* Robert A. Russell, Mar 29 2018 *)
  • PARI
    Vec((1 - 6*x + 9*x^2 - 3*x^3) / ((1 - x)*(1 - 2*x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Nov 03 2017

Formula

O.g.f.: (3*q^3 - 9*q^2 + 6*q - 1)/(8*q^3 - 14*q^2 + 7*q - 1) = Sum_{k=0..4} (q^k/Product_{i=1..k} (1-i*q)).
a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3); a(0) = 1, a(1) = 1, a(2) = 2, a(3) = 5, a(n) = Sum_{k=1..4} A008277(n,k).
a(n) = (8 + 3*2^(1+n) + 4^n) / 24 for n>0. - Colin Barker, Nov 03 2017
a(n) = Sum_{k=0..4} Stirling2(n,k). - Robert A. Russell, Mar 29 2018
G.f.: Sum_{j=0..k} A248925(k,j)*x^j / Product_{j=1..k} 1-j*x with k=4. - Robert A. Russell, Apr 25 2018
E.g.f.: (9 + 8*exp(x) + 6*exp(2*x) + exp(4*x))/24. - Peter Luschny, Nov 06 2018