A124313 Pentanacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5), starting 1,0,0,0,1.
1, 0, 0, 0, 1, 2, 3, 6, 12, 24, 47, 92, 181, 356, 700, 1376, 2705, 5318, 10455, 20554, 40408, 79440, 156175, 307032, 603609, 1186664, 2332920, 4586400, 9016625, 17726218, 34848827, 68510990, 134689060, 264791720, 520566815, 1023407412
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- I. Flores, k-Generalized Fibonacci numbers, Fib. Quart., 5 (1967), 258-266.
- Eric Weisstein's World of Mathematics, Pentanacci Number
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,1,1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x*(1-2*x+x^4)/(1-2*x+x^6) )); // G. C. Greubel, Aug 25 2023 -
Mathematica
f[n_]:= MatrixPower[{{1,1,1,1,1}, {1,0,0,0,0}, {0,1,0,0,0}, {0,0,1,0, 0}, {0,0,0,1,0}}, n][[ 1, 4]]; Array[f, 50] LinearRecurrence[{1,1,1,1,1}, {1,0,0,0,1}, 40] (* G. C. Greubel, Aug 25 2023 *)
-
SageMath
def A124313_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1-2*x+x^4)/(1-2*x+x^6) ).list() A124313_list(50) # G. C. Greubel, Aug 25 2023
Formula
G.f.: x*(1-x-x^2-x^3)/(1-x-x^2-x^3-x^4-x^5). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 12 2009; checked and corrected by R. J. Mathar, Sep 16 2009
Extensions
Edited by Ralf Stephan, Oct 20 2013