A124312 Expansion of g.f. x^3*(1 - x)/(1 - x - x^2 - x^3 - x^4 - x^5).
0, 0, 1, 0, 1, 2, 4, 8, 15, 30, 59, 116, 228, 448, 881, 1732, 3405, 6694, 13160, 25872, 50863, 99994, 196583, 386472, 759784, 1493696, 2936529, 5773064, 11349545, 22312618, 43865452, 86237208, 169537887, 333302710, 655255875, 1288199132
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..3407
- Martin Burtscher, Igor Szczyrba, and RafaĆ Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,1,1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 50); [0,0] cat Coefficients(R!( x^3*(1-x)^2/(1-2*x+x^6) )); // G. C. Greubel, Aug 25 2023 -
Maple
f:= gfun:-rectoproc({a(n)+a(n+1)+a(n+2)+a(n+3)+a(n+4)-a(n+5), a(0) = 0, a(1) = 0, a(2) = 0, a(3) = 1, a(4) = 0}, a(n), remember): seq(f(n),n=1..30); # Robert Israel, Apr 13 2017
-
Mathematica
CoefficientList[Series[(x^3-x^4)/(1-x-x^2-x^3-x^4-x^5), {x,0,50}], x]
-
SageMath
def A124312_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( x^2*(1-x)^2/(1-2*x+x^6) ).list() A124312_list(50) # G. C. Greubel, Aug 25 2023
Formula
Extensions
Edited by N. J. A. Sloane, Oct 29 2006, Jul 14 2007
Name corrected by Robert Israel, Apr 13 2017
Comments