cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124315 a(n) = Sum_{ d divides n } tau(gcd(d,n/d)), where tau = sigma_0 = A000005.

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 6, 4, 4, 2, 8, 2, 4, 4, 9, 2, 8, 2, 8, 4, 4, 2, 12, 4, 4, 6, 8, 2, 8, 2, 12, 4, 4, 4, 16, 2, 4, 4, 12, 2, 8, 2, 8, 8, 4, 2, 18, 4, 8, 4, 8, 2, 12, 4, 12, 4, 4, 2, 16, 2, 4, 8, 16, 4, 8, 2, 8, 4, 8, 2, 24, 2, 4, 8, 8, 4, 8, 2, 18, 9, 4, 2, 16, 4, 4, 4, 12, 2, 16, 4, 8, 4, 4, 4, 24, 2, 8
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2006

Keywords

Comments

Apparently the Mobius transform of A046951. - R. J. Mathar, Feb 07 2011
Number of ordered pairs of divisors of n, (d1,d2), with d1<=d2, such that d1|d2 and n|(d1*d2). - Wesley Ivan Hurt, Mar 22 2022

Crossrefs

Programs

  • Maple
    A124315 := proc(n) local a,d; a := 0 ; for d in numtheory[divisors](n) do igcd(d,n/d) ; a := a+numtheory[tau](%) ; end do: a; end proc: # R. J. Mathar, Apr 14 2011
  • Mathematica
    Table[Plus @@ Map[DivisorSigma[0, GCD[ #, n/# ]] &, Divisors@n], {n, 98}]
    f[p_, e_] := e + 1 + Floor[e^2/4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 10 2022 *)
  • PARI
    a(n) = sumdiv(n, d, numdiv(gcd(d, n/d))); \\ Michel Marcus, Feb 12 2016
    
  • Python
    from sympy import divisors, divisor_count, gcd
    def a(n): return sum([divisor_count(gcd(d, n/d)) for d in divisors(n)]) # Indranil Ghosh, May 25 2017

Formula

a(p) = 2 iff p is a prime.
Multiplicative with a(p^e) = e+1+floor(e^2/4). - R. J. Mathar, Apr 14 2011
Dirichlet g.f.: zeta(s)^2 * zeta(2*s). - Vaclav Kotesovec, Jan 11 2019
Sum_{k=1..n} a(k) ~ (Pi^2/6) * (n*log(n) + (2*gamma - 1 + 2*zeta'(2)/zeta(2))*n), where gamma is Euler's constant (A001620). - Amiram Eldar, Oct 22 2022