A124363 a(n) = n^3 + 71*n + 1.
1, 73, 151, 241, 349, 481, 643, 841, 1081, 1369, 1711, 2113, 2581, 3121, 3739, 4441, 5233, 6121, 7111, 8209, 9421, 10753, 12211, 13801, 15529, 17401, 19423, 21601, 23941, 26449, 29131, 31993, 35041, 38281, 41719, 45361, 49213, 53281, 57571
Offset: 1
Links
- Joe L. Mott and Kermit Rose, Prime-Producing Cubic Polynomials.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Mathematica
Table[n^3 + 71*n + 1, {n, 0, 99}] LinearRecurrence[{4,-6,4,-1},{1,73,151,241},50] (* Harvey P. Dale, Oct 01 2021 *)
-
Maxima
A124363(n):=n^3 + 71*n + 1$ makelist(A124363(n),n,0,30); /* Martin Ettl, Nov 08 2012 */
Formula
G.f.: x*(1+69*x-135*x^2+71*x^3) / (x-1)^4 . - R. J. Mathar, Jan 25 2016
Comments