cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A218456 2*n^3 - 313*n^2 + 6823*n - 13633.

Original entry on oeis.org

-13633, -7121, -1223, 4073, 8779, 12907, 16469, 19477, 21943, 23879, 25297, 26209, 26627, 26563, 26029, 25037, 23599, 21727, 19433, 16729, 13627, 10139, 6277, 2053, -2521, -7433, -12671, -18223, -24077, -30221, -36643, -43331, -50273, -57457
Offset: 0

Views

Author

Pedja Terzic, Oct 29 2012

Keywords

Comments

A prime-producing cubic polynomial. Produces 79 distinct primes if we scan the absolute values of the first 100 terms..

Crossrefs

Programs

  • Mathematica
    Table[2n^3-313n^2+6823n-13633,{n,0,99}]
    LinearRecurrence[{4,-6,4,-1},{-13633,-7121,-1223,4073},40] (* Harvey P. Dale, May 03 2018 *)
  • Maxima
    A218456(n):=2*n^3-313*n^2+6823*n-13633$
    makelist(A218456(n),n,0,30); /* Martin Ettl, Nov 08 2012 */

Formula

G.f.: (20771*x^3-54537*x^2+47411*x-13633)/(x-1)^4. [Colin Barker, Nov 10 2012]

A218457 a(n) = 6*n^3 - 263*n^2 + 3469*n - 12841.

Original entry on oeis.org

-12841, -9629, -6907, -4639, -2789, -1321, -199, 613, 1151, 1451, 1549, 1481, 1283, 991, 641, 269, -89, -397, -619, -719, -661, -409, 73, 821, 1871, 3259, 5021, 7193, 9811, 12911, 16529, 20701, 25463, 30851, 36901, 43649, 51131, 59383, 68441, 78341, 89119
Offset: 0

Views

Author

Pedja Terzic, Oct 29 2012

Keywords

Comments

A prime-producing cubic polynomial. Produces 78 distinct primes if we scan the absolute values of the first 100 terms.

Crossrefs

Programs

  • Mathematica
    Table[6n^3-263n^2+3469n-12841,{n,0,99}]
  • PARI
    a(n) = {6*n^3 - 263*n^2 + 3469*n - 12841} \\ Andrew Howroyd, Apr 27 2020

Extensions

Signs of terms corrected and a(32) and beyond from Andrew Howroyd, Apr 27 2020

A218458 a(n) = 2*n^3 - 163*n^2 + 2777*n - 11927.

Original entry on oeis.org

-11927, -9311, -7009, -5009, -3299, -1867, -701, 211, 881, 1321, 1543, 1559, 1381, 1021, 491, -197, -1031, -1999, -3089, -4289, -5587, -6971, -8429, -9949, -11519, -13127, -14761, -16409, -18059, -19699, -21317, -22901, -24439, -25919
Offset: 0

Views

Author

Pedja Terzic, Oct 29 2012

Keywords

Comments

A prime-producing cubic polynomial. Produces 78 distinct primes if we scan the absolute values of the first 100 terms.

Crossrefs

Programs

  • Magma
    [2*n^3 - 163*n^2 + 2777*n - 11927 : n in [0..60]]; // Wesley Ivan Hurt, Apr 21 2021
  • Mathematica
    Table[2n^3-163n^2+2777n-11927,{n,0,99}]
    LinearRecurrence[{4,-6,4,-1},{-11927,-9311,-7009,-5009},40] (* Harvey P. Dale, Jan 31 2017 *)
  • Maxima
    A218458(n):=2*n^3-163*n^2+2777*n-11927$
    makelist(A218458(n),n,0,30); /* Martin Ettl, Nov 08 2012 */
    

Formula

G.f.: (-11927+38397*x-41327*x^2+14869*x^3)/(x-1)^4. - R. J. Mathar, Nov 07 2012
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Wesley Ivan Hurt, Apr 21 2021
Showing 1-3 of 3 results.