A124429 Antidiagonal sums of triangle A124428.
1, 1, 1, 2, 3, 5, 8, 13, 22, 36, 61, 102, 172, 292, 493, 841, 1429, 2439, 4169, 7124, 12216, 20930, 35940, 61749, 106155, 182749, 314638, 542338, 935195, 1613593, 2786037, 4811920, 8316435, 14378247, 24870062, 43036264, 74496224, 129008514
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
[(&+[Binomial(Floor((n-k)/2), k)*Binomial(Floor((n-k+1)/2), k): k in [0..Floor(n/3)]]): n in [0..40]]; // G. C. Greubel, Feb 24 2019
-
Mathematica
Table[Sum[Binomial[Floor[(n-k)/2], k]*Binomial[Floor[(n-k+1)/2], k], {k, 0, Floor[n/3]}], {n, 0, 40}] (* G. C. Greubel, Feb 24 2019 *)
-
PARI
a(n)=sum(k=0,n\3,binomial((n-k)\2,k)*binomial((n-k+1)\2,k))
-
Sage
[sum(binomial(floor((n-k)/2),k)*binomial(floor((n-k+1)/2),k) for k in (0..floor(n/3))) for n in (0..40)] # G. C. Greubel, Feb 24 2019
Formula
a(n) = Sum_{k=0..[n/3]} C([(n-k)/2],k)*C([(n-k+1)/2],k).