cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124429 Antidiagonal sums of triangle A124428.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 8, 13, 22, 36, 61, 102, 172, 292, 493, 841, 1429, 2439, 4169, 7124, 12216, 20930, 35940, 61749, 106155, 182749, 314638, 542338, 935195, 1613593, 2786037, 4811920, 8316435, 14378247, 24870062, 43036264, 74496224, 129008514
Offset: 0

Views

Author

Paul D. Hanna, Oct 31 2006

Keywords

Crossrefs

Programs

  • Magma
    [(&+[Binomial(Floor((n-k)/2), k)*Binomial(Floor((n-k+1)/2), k): k in [0..Floor(n/3)]]): n in [0..40]]; // G. C. Greubel, Feb 24 2019
    
  • Mathematica
    Table[Sum[Binomial[Floor[(n-k)/2], k]*Binomial[Floor[(n-k+1)/2], k], {k, 0, Floor[n/3]}], {n, 0, 40}] (* G. C. Greubel, Feb 24 2019 *)
  • PARI
    a(n)=sum(k=0,n\3,binomial((n-k)\2,k)*binomial((n-k+1)\2,k))
    
  • Sage
    [sum(binomial(floor((n-k)/2),k)*binomial(floor((n-k+1)/2),k) for k in (0..floor(n/3))) for n in (0..40)] # G. C. Greubel, Feb 24 2019

Formula

a(n) = Sum_{k=0..[n/3]} C([(n-k)/2],k)*C([(n-k+1)/2],k).