cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A096987 Numerator of Sum_{k=1..n} 1/H(k), where H(k) = Sum_{j=1..k} 1/j is the k-th harmonic number.

Original entry on oeis.org

0, 1, 5, 73, 2221, 353777, 19595573, 239046803, 198972350083, 1535302297058707, 100536661265514127, 8974880059175708288297, 818810519369821323965929237, 990666575600755815615137883006341, 1220749860499992165560973207703210595953
Offset: 0

Views

Author

Leroy Quet, Aug 19 2004

Keywords

Examples

			1/1 + 1/(1 + 1/2) + 1/(1 + 1/2 + 1/3) = 73/33, so a(3) = 73.
		

Crossrefs

Cf. A124432 (denominators), A000720, A001008, A002805, A001620, A080130.

Programs

  • Mathematica
    f[n_] := Numerator[ Sum[ 1/HarmonicNumber[j], {j, 1, n}]]; Table[ f[n], {n, 0, 14}] (* Robert G. Wilson v, Aug 21 2004 *)
  • PARI
    m=13;for(n=0,m,print1(numerator(sum(k=1,n,1/sum(j=1,k,1/j))),",")) \\ Klaus Brockhaus, Aug 21 2004

Formula

From Thomas Ordowski, Mar 21 2023: (Start)
Sum_{k=1..n} 1/H(k) ~ Sum_{k=2..n} 1/log(k) ~ Integral_{2..n} dx/log(x) = Li(n).
Sum_{k=1..n} 1/H(k) = Sum_{k=1..n} 1/(log(k + 1/2) + gamma) - C + o(1), where gamma = A001620 = 0.577... is Euler's constant and the constant C = 0.0229825...
Sum_{k=1..n} 1/H(k) = exp(-gamma)*(Ei(log(n) + gamma) - 1) + o(1), where Ei(x) is the exponential integral function of real x, and we have Ei(log(x)) = li(x).
Note that a(n)/A124432(n) ~ pi(n) = A000720(n), see my first formula.
Sum_{k=1..n} 1/H(k) = n/(H(n) - 1 + ...) = n/(log(n) + gamma - 1 + O(1/log(n))).
Theorem: lim_{n->oo} (H(n) - n / Sum_{k=1..n} 1/H(k)) = 1, see my third formula.
Proof: since Integral dx / (log(x) + gamma) = exp(-gamma)*Ei(log(x) + gamma) + c, so we get lim_{n->oo} (log(n) + gamma - n*exp(gamma) / Ei(log(n) + gamma)) = 1, qed. (End)

Extensions

More terms from Klaus Brockhaus and Robert G. Wilson v, Aug 21 2004

A229557 Array read by antidiagonals. Rows are the denominators of consecutive harmonic transforms starting with a first row 1, 1, 1,....

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 3, 1, 1, 1, 12, 33, 5, 1, 1, 1, 60, 825, 365, 8, 1, 1, 1, 20, 113025, 810665, 5992, 13, 1, 1, 1, 140, 5538225, 286794631705, 5886103384, 164541, 21, 1, 1, 1, 280, 60920475, 5619905141583441965, 4630449259971272605672, 14469935305431, 1031079, 34, 1, 1, 1
Offset: 1

Views

Author

Franz Vrabec, Sep 26 2013

Keywords

Comments

The "harmonic transform" of a sequence of positive numbers a(i) is the sequence h(n) of the partial sums of their reciprocals: h(n)=sum_{i=1..n} 1/a(i).

Examples

			Table begins
1, 1,   1,      1,...
1, 1,   1,      1,...
1, 2,   6,     12,...
1, 3,  33,    825,...
1, 5, 365, 810665,...
		

Crossrefs

Cf. A229556 (numerators).
Rows 1-4 are A000012(n), A000012(n), A002805(n), A124432(n+1).
Columns 1-2 are A000012(n), A000045(n+1).

Programs

  • Maple
    A229556A := proc(n,k)
        option remember;
        if n = 1 then
            1;
        else
            add( 1/procname(n-1,c),c=1..k) ;
        end if;
    end proc:
    A229557 := proc(n,k)
        denom(A229556A(n,k)) ;
    end proc:
    for d from 2 to 12 do
        for k from d-1 to 1 by -1 do
            printf("%d,",A229557(d-k,k)) ;
        end do:
    end do:

A234714 Numerator of sum_{k=1..n} 1/(k*H(k)) where H(k) is the harmonic number H(k) = sum_{j=1..n} 1/j.

Original entry on oeis.org

0, 1, 4, 50, 1349, 194713, 9917687, 112451057, 87707471002, 638247495586258, 39621419345255038, 3367553690081394959018, 293578866124447319211215128, 340463591070905769538621961175104, 403214792232827898020426758621769680732, 16787247654077861265551571547714793328259156
Offset: 0

Views

Author

Stuart Clary, Dec 29 2013

Keywords

Comments

The corresponding denominators are in A234715.

Crossrefs

Programs

  • Mathematica
    nmax = 54; Table[ Numerator[ Sum[ 1/(k HarmonicNumber[k]), {k, 1, n} ] ], {n, 0, nmax} ]

A234715 Denominator of sum_{k=1..n} 1/(k*H(k)) where H(k) is the harmonic number H(k) = sum_{j=1..n} 1/j.

Original entry on oeis.org

1, 1, 3, 33, 825, 113025, 5538225, 60920475, 46360481475, 330503872435275, 20160736218551775, 1687675389591187637025, 145175524688023551724527525, 166370135063802174111446471957325, 194941377468714112878127508925972294225, 8038017817167489016303831575544615607779425
Offset: 0

Views

Author

Stuart Clary, Dec 29 2013

Keywords

Comments

The corresponding numerators are in A234714.
A124432(n) = a(n) for 0 <= n <= 53, but A124432(54) = 3 * a(54).

Crossrefs

Programs

  • Mathematica
    nmax = 54; Table[ Denominator[ Sum[ 1/(k HarmonicNumber[k]), {k, 1, n} ] ], {n, 0, nmax} ]
Showing 1-4 of 4 results.