cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A124432 Denominator of Sum_{k=1..n} 1/H(k), where H(k) = Sum_{j=1..k} 1/j is the k-th harmonic number.

Original entry on oeis.org

1, 1, 3, 33, 825, 113025, 5538225, 60920475, 46360481475, 330503872435275, 20160736218551775, 1687675389591187637025, 145175524688023551724527525, 166370135063802174111446471957325, 194941377468714112878127508925972294225
Offset: 0

Views

Author

Leroy Quet, Dec 15 2006

Keywords

Comments

If p > 3 is prime, then p^2 divides a(p-1). - Thomas Ordowski, Mar 24 2023

Crossrefs

Cf. A096987 (numerators), A001008, A002805.

Programs

  • Mathematica
    f[n_] := Denominator[ Sum[ 1/HarmonicNumber[j], {j, n}]]; Table[ f[n], {n, 0, 14}] (* Ray Chandler, Dec 16 2006 *)
  • PARI
    a(n) = denominator(sum(k=1, n, 1/sum(j=1, k, 1/j))); \\ Michel Marcus, Mar 24 2023

Extensions

Extended by Ray Chandler and Robert G. Wilson v, Dec 16 2006

A229556 Array read by antidiagonals. Rows are the numerators of consecutive harmonic transforms starting with a first row 1, 1, 1, ....

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 11, 5, 1, 1, 5, 25, 73, 8, 1, 1, 6, 137, 2221, 749, 13, 1, 1, 7, 49, 353777, 1964654, 12657, 21, 1, 1, 8, 363, 19595573, 786674809783, 14862065179, 343693, 34, 1, 1, 9, 761, 239046803, 17003676861538314284, 13379715149864207035877, 35955580499839
Offset: 1

Views

Author

Franz Vrabec, Sep 26 2013

Keywords

Comments

The "harmonic transform" of a sequence of positive numbers a(i) is the sequence h(n) of the partial sums of their reciprocals: h(n) = Sum_{i=1..n} 1/a(i).

Examples

			Table begins
  1, 1,   1,       1, ...
  1, 2,   3,       4, ...
  1, 3,  11,      25, ...
  1, 5,  73,    2221, ...
  1, 8, 749, 1964654, ...
which are the numerators of
  1,   1,       1,              1,                         1, ...
  1,   2,       3,              4,                         5, ...
  1, 3/2,    11/6,          25/12,                    137/60, ...
  1, 5/3,   73/33,       2221/825,             353777/113025, ...
  1, 8/5, 749/365, 1964654/810665, 786674809783/286794631705, ...
		

Crossrefs

Cf. A229557 (denominators).
Rows 1-4 are A000012(n), A000027(n), A001008(n), A096987(n+1).
Columns 1-2 are A000012(n), A000045(n+2).
Column 3 gives A350834.

Programs

  • Maple
    A229556A := proc(n,k)
        option remember;
        if n = 1 then
            1;
        else
            add( 1/procname(n-1,c),c=1..k) ;
        end if;
    end proc:
    A229556 := proc(n,k)
        numer(A229556A(n,k)) ;
    end proc:
    for d from 2 to 12 do
        for k from d-1 to 1 by -1 do
            printf("%d,",A229556(d-k,k)) ;
        end do:
    end do:

A234714 Numerator of sum_{k=1..n} 1/(k*H(k)) where H(k) is the harmonic number H(k) = sum_{j=1..n} 1/j.

Original entry on oeis.org

0, 1, 4, 50, 1349, 194713, 9917687, 112451057, 87707471002, 638247495586258, 39621419345255038, 3367553690081394959018, 293578866124447319211215128, 340463591070905769538621961175104, 403214792232827898020426758621769680732, 16787247654077861265551571547714793328259156
Offset: 0

Views

Author

Stuart Clary, Dec 29 2013

Keywords

Comments

The corresponding denominators are in A234715.

Crossrefs

Programs

  • Mathematica
    nmax = 54; Table[ Numerator[ Sum[ 1/(k HarmonicNumber[k]), {k, 1, n} ] ], {n, 0, nmax} ]

A234715 Denominator of sum_{k=1..n} 1/(k*H(k)) where H(k) is the harmonic number H(k) = sum_{j=1..n} 1/j.

Original entry on oeis.org

1, 1, 3, 33, 825, 113025, 5538225, 60920475, 46360481475, 330503872435275, 20160736218551775, 1687675389591187637025, 145175524688023551724527525, 166370135063802174111446471957325, 194941377468714112878127508925972294225, 8038017817167489016303831575544615607779425
Offset: 0

Views

Author

Stuart Clary, Dec 29 2013

Keywords

Comments

The corresponding numerators are in A234714.
A124432(n) = a(n) for 0 <= n <= 53, but A124432(54) = 3 * a(54).

Crossrefs

Programs

  • Mathematica
    nmax = 54; Table[ Denominator[ Sum[ 1/(k HarmonicNumber[k]), {k, 1, n} ] ], {n, 0, nmax} ]

A095992 a(1) = 30; for n > 1, a(n+1) = a(n) + {product of nonzero digits of a(n)}.

Original entry on oeis.org

30, 33, 42, 50, 55, 80, 88, 152, 162, 174, 202, 206, 218, 234, 258, 338, 410, 414, 430, 442, 474, 586, 826, 922, 958, 1318, 1342, 1366, 1474, 1586, 1826, 1922, 1958, 2318, 2366, 2582, 2742, 2854, 3174, 3258, 3498, 4362, 4506, 4626, 4914, 5058, 5258, 5658
Offset: 1

Views

Author

Julien Piquet (julipiquet(AT)yahoo.fr), Jul 18 2004

Keywords

References

  • From a puzzle; explanation found by Pierre Roger.

Crossrefs

Programs

  • Mathematica
    a[1] = 30; a[n_] := a[n] = Block[{s = Sort[ IntegerDigits[a[n - 1]]]}, While[ s[[1]] == 0, s = Drop[s, 1]]; a[n - 1] + Times @@ s]; Table[ a[n], {n, 50}]
    nxt[n_] := n+Times@@Select[IntegerDigits[n], #>0&]; NestList[nxt,30,50] (* Harvey P. Dale, Jan 08 2011 *)

Extensions

The proposer suggests that this web site may contain other sequences also.
Edited and extended by Robert G. Wilson v and Klaus Brockhaus, Jul 20 2004
Showing 1-5 of 5 results.