cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A216917 Square array read by antidiagonals, T(N,n) = lcm{1<=j<=N, gcd(j,n)=1 | j} for N >= 0, n >= 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 6, 1, 1, 1, 12, 3, 2, 1, 1, 60, 3, 2, 1, 1, 1, 60, 15, 4, 3, 2, 1, 1, 420, 15, 20, 3, 6, 1, 1, 1, 840, 105, 20, 15, 12, 1, 2, 1, 1, 2520, 105, 140, 15, 12, 1, 6, 1, 1, 1, 2520, 315, 280, 105, 12, 5, 12, 3, 2, 1, 1, 27720, 315, 280, 105, 84
Offset: 1

Views

Author

Peter Luschny, Oct 02 2012

Keywords

Comments

T(N,n) is the least common multiple of all integers up to N that are relatively prime to n.
Replacing LCM in the definition with "product" gives the Gauss factorial A216919.

Examples

			   n | N=0 1 2 3  4  5  6   7   8    9   10
-----+-------------------------------------
   1 |   1 1 2 6 12 60 60 420 840 2520 2520
   2 |   1 1 1 3  3 15 15 105 105  315  315
   3 |   1 1 2 2  4 20 20 140 280  280  280
   4 |   1 1 1 3  3 15 15 105 105  315  315
   5 |   1 1 2 6 12 12 12  84 168  504  504
   6 |   1 1 1 1  1  5  5  35  35   35   35
   7 |   1 1 2 6 12 60 60  60 120  360  360
   8 |   1 1 1 3  3 15 15 105 105  315  315
   9 |   1 1 2 2  4 20 20 140 280  280  280
  10 |   1 1 1 3  3  3  3  21  21   63   63
  11 |   1 1 2 6 12 60 60 420 840 2520 2520
  12 |   1 1 1 1  1  5  5  35  35   35   35
  13 |   1 1 2 6 12 60 60 420 840 2520 2520
		

Programs

  • Mathematica
    t[, 0] = 1; t[n, k_] := LCM @@ Select[Range[k], CoprimeQ[#, n]&]; Table[t[n - k + 1, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jul 29 2013 *)
  • Sage
    def A216917(N, n):
        return lcm([j for j in (1..N) if gcd(j, n) == 1])
    for n in (1..13): [A216917(N,n) for N in (0..10)]

Formula

For n > 0:
A(n,1) = A003418(n);
A(n,2^k) = A217858(n) for k > 0;
A(n,3^k) = A128501(n-1) for k > 0;
A(2,n) = A000034(n);
A(3,n) = A129203(n-1);
A(4,n) = A129197(n-1);
A(n,n) = A038610(n);
A(floor(n/2),n) = A124443(n);
A(n,1)/A(n,n) = A064446(n);
A(n,1)/A(n,2) = A053644(n).

A124444 a(n) = LCM of the integers, from n/2 to n, which are coprime to n.

Original entry on oeis.org

1, 1, 2, 3, 12, 5, 60, 35, 280, 63, 2520, 77, 27720, 1287, 8008, 6435, 720720, 2431, 12252240, 46189, 3695120, 440895, 232792560, 96577, 1070845776, 3900225, 2974571600, 5014575, 80313433200, 215441, 2329089562800, 31556720475
Offset: 1

Views

Author

Leroy Quet, Nov 01 2006

Keywords

Examples

			The integers which are >= 9/2 and are <= 9 and which are coprime to 9 are 5, 7 and 8. So a(9) = lcm(5,7,8) = 280.
		

Crossrefs

Cf. A124443.

Programs

  • Mathematica
    f[n_] := LCM @@ Select[Range[Ceiling[n/2], n], GCD[ #, n] == 1 &];Table[f[n], {n, 33}] (* Ray Chandler, Nov 12 2006 *)
  • PARI
    a(n) = lcm(select(x->(gcd(x, n)==1), vector(n\2, k, n\2+k))); \\ Michel Marcus, Mar 18 2018

Extensions

Extended by Ray Chandler, Nov 12 2006
Showing 1-2 of 2 results.