cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124527 Row sums of triangle A124526.

Original entry on oeis.org

1, 1, 2, 5, 14, 46, 162, 641, 2656, 12092, 56956, 290636, 1523088, 8559980, 49163792, 300514337, 1870652672, 12318376190, 82394305842, 580168452664, 4141242464512, 30992978322024, 234765130286990, 1858132080028884
Offset: 0

Views

Author

Paul D. Hanna, Nov 08 2006

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
          `if`(n=0, 1, b(n-1, k-1) +(k+1)*(b(n-1, k) +b(n-1, k+1))))
        end:
    a:= n-> add(b(iquo(n, 2), k)*b(iquo(n+1, 2), k), k=0..n/2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 14 2014
  • Mathematica
    b[n_, k_] := b[n, k] = If[k < 0 || k > n, 0, If[n == 0, 1, b[n - 1, k - 1] + (k + 1) (b[n - 1, k] + b[n - 1, k + 1])]];
    a[n_] := Sum[b[Quotient[n, 2], k] b[Quotient[n + 1, 2], k], {k, 0, n/2}];
    a /@ Range[0, 30]
    (* Second program: *)
    S[n_, k_] = Sum[StirlingS2[n, i] Binomial[i, k], {i, 0, n}];
    T[n_, k_] := S[Floor[n/2], k] S[Floor[(n + 1)/2], k];
    a[n_] := Sum[T[n, k], {k, 0, Floor[n/2]}];
    a /@ Range[0, 30] (* Jean-François Alcover, Nov 02 2020, first program after Alois P. Heinz *)
  • PARI
    {a(n)=sum(k=0,n\2,(n\2)!*((n+1)\2)!*polcoeff(polcoeff(exp((1+y)*(exp(x+x*O(x^n))-1)),n\2),k) *polcoeff(polcoeff(exp((1+y)*(exp(x+x*O(x^n))-1)),(n+1)\2),k))}