A124527 Row sums of triangle A124526.
1, 1, 2, 5, 14, 46, 162, 641, 2656, 12092, 56956, 290636, 1523088, 8559980, 49163792, 300514337, 1870652672, 12318376190, 82394305842, 580168452664, 4141242464512, 30992978322024, 234765130286990, 1858132080028884
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Programs
-
Maple
b:= proc(n, k) option remember; `if`(k<0 or k>n, 0, `if`(n=0, 1, b(n-1, k-1) +(k+1)*(b(n-1, k) +b(n-1, k+1)))) end: a:= n-> add(b(iquo(n, 2), k)*b(iquo(n+1, 2), k), k=0..n/2): seq(a(n), n=0..30); # Alois P. Heinz, Apr 14 2014
-
Mathematica
b[n_, k_] := b[n, k] = If[k < 0 || k > n, 0, If[n == 0, 1, b[n - 1, k - 1] + (k + 1) (b[n - 1, k] + b[n - 1, k + 1])]]; a[n_] := Sum[b[Quotient[n, 2], k] b[Quotient[n + 1, 2], k], {k, 0, n/2}]; a /@ Range[0, 30] (* Second program: *) S[n_, k_] = Sum[StirlingS2[n, i] Binomial[i, k], {i, 0, n}]; T[n_, k_] := S[Floor[n/2], k] S[Floor[(n + 1)/2], k]; a[n_] := Sum[T[n, k], {k, 0, Floor[n/2]}]; a /@ Range[0, 30] (* Jean-François Alcover, Nov 02 2020, first program after Alois P. Heinz *)
-
PARI
{a(n)=sum(k=0,n\2,(n\2)!*((n+1)\2)!*polcoeff(polcoeff(exp((1+y)*(exp(x+x*O(x^n))-1)),n\2),k) *polcoeff(polcoeff(exp((1+y)*(exp(x+x*O(x^n))-1)),(n+1)\2),k))}