cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124697 Number of base 4 circular n-digit numbers with adjacent digits differing by 1 or less.

Original entry on oeis.org

1, 4, 10, 22, 54, 134, 340, 872, 2254, 5854, 15250, 39802, 104004, 271964, 711490, 1861862, 4873054, 12755614, 33391060, 87413152, 228841254, 599099054, 1568437210, 4106182322, 10750060804, 28143920884, 73681573690, 192900592822, 505019869254, 1322158472054
Offset: 0

Views

Author

R. H. Hardin, Dec 28 2006

Keywords

Comments

[Empirical] a(base,n)=a(base-1,n)+A002426(n+1) for base>=1.int(n/2)+1
a(n) = T(n, 4) where T(n, k) = Sum_{j=1..k} (1+2*cos(j*Pi/(k+1)))^n. These are the number of smooth cyclic words of length n over the alphabet {1,2,3,4}. See theorem 3.3 in Knopfmacher and others, reference in A124696. - Peter Luschny, Aug 13 2012

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4,-3,-2,1},{1,4,10,22,54},30] (* Harvey P. Dale, Oct 14 2016 *)
  • PARI
    Vec(-(3*x^4-4*x^3-3*x^2+1)/((x^2-3*x+1)*(x^2+x-1)) + O(x^40)) \\ Colin Barker, Jul 19 2015

Formula

G.f.: A(x) = (3*x^4-4*x^3-3*x^2+1) / ((x^2-3*x+1)*(1-x-x^2)). - Colin Barker, Jul 19 2015
From Peter Bala, Nov 08 2022: (Start)
a(n) = Lucas(n) + Lucas(2*n) = A000032(n) + A005248(n) for n >= 1.
A(x) = 1 + x*B'(x)/B(x), where B(x) = 1/((1 - x - x^2)*(1 - 3*x + x^2)) = 1 + 4*x + 13*x^2 + 38*x^3 + ... has integral coefficients. See A056014.
It follows that the Gauss congruences hold: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for all primes p and positive integers n and r. (End)