A208773 Number of n-bead necklaces labeled with numbers 1..4 not allowing reversal, with no adjacent beads differing by more than 1.
4, 7, 10, 18, 30, 65, 128, 293, 658, 1544, 3622, 8711, 20924, 50889, 124150, 304718, 750334, 1855429, 4600696, 11442853, 28528618, 71294416, 178529670, 447923761, 1125756860, 2833917147, 7144466842, 18036449390, 45591671454, 115381885423, 292329164912, 741411257693, 1882219950046, 4782783122992, 12163730636250
Offset: 1
Keywords
Examples
All solutions for n=3: ..2....4....1....2....1....2....3....3....1....3 ..2....4....1....2....1....3....3....4....2....3 ..3....4....2....2....1....3....3....4....2....4
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
- Arnold Knopfmacher, Toufik Mansour, Augustine Munagi, Helmut Prodinger, Smooth words and Chebyshev polynomials, arXiv:0809.0551v1 [math.CO], 2008.
Programs
-
Mathematica
sn[n_, k_] := 1/n*Sum[ Sum[ EulerPhi[j]*(1 + 2*Cos[i*Pi/(k + 1)])^(n/j), {j, Divisors[n]}], {i, 1, k}]; Table[sn[n, 4], {n, 1, 35}] // FullSimplify (* Jean-François Alcover, Oct 31 2017, after Joerg Arndt *)
-
PARI
/* from the Knopfmacher et al. reference */ default(realprecision,99); /* using floats */ sn(n,k)=1/n*sum(i=1,k,sumdiv(n,j,eulerphi(j)*(1+2*cos(i*Pi/(k+1)))^(n/j))); vector(66,n, round(sn(n,4)) ) /* Joerg Arndt, Aug 09 2012 */
Formula
a(n) = Sum_{ d | n } A215336(d). - Joerg Arndt, Aug 13 2012
a(n) = (1/n) * Sum_{d | n} totient(n/d) * A124697(n). - Andrew Howroyd, Mar 18 2017
Comments