cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A007408 Wolstenholme numbers: numerator of Sum_{k=1..n} 1/k^3.

Original entry on oeis.org

1, 9, 251, 2035, 256103, 28567, 9822481, 78708473, 19148110939, 19164113947, 25523438671457, 25535765062457, 56123375845866029, 56140429821090029, 56154295334575853, 449325761325072949, 2207911834254200646437, 245358578943756786493
Offset: 1

Views

Author

Keywords

Comments

By Theorem 131 in Hardy and Wright, p^2 divides a(p - 1) for prime p > 5. - T. D. Noe, Sep 05 2002
p^3 divides a(p - 1) for prime p = 37. Primes p such that p divides a((p + 1)/2) are listed in A124787(n) = {3, 11, 17, 89}. - Alexander Adamchuk, Nov 07 2006
a(n)/A007409(n) is the partial sum towards zeta(3), where zeta(s) is the Riemann zeta function. - Alonso del Arte, Dec 30 2012
See the Wolfdieter Lang link under A103345 on Zeta(k, n) with the rationals for k=1..10, g.f.s and polygamma formulas. - Wolfdieter Lang, Dec 03 2013
Denominator of the harmonic mean of the first n cubes. - Colin Barker, Nov 13 2014

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford Univ. Press, 1971, page 104.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A007408:=n->numer(sum(1/k^3,k=1..n)); map(%,[$1..20]); # M. F. Hasler, Nov 10 2006
  • Mathematica
    Table[Numerator[Sum[1/k^3, {k, n}]], {n, 10}] (* Alonso del Arte, Dec 30 2012 *)
    Table[Denominator[HarmonicMean[Range[n]^3]],{n,20}] (* Harvey P. Dale, Aug 20 2017 *)
    Accumulate[1/Range[20]^3]//Numerator (* Harvey P. Dale, Aug 28 2023 *)
  • PARI
    a(n)=numerator(sum(k=1,n,1/k^3)) \\ Charles R Greathouse IV, Jul 19 2011
    
  • Python
    from fractions import Fraction
    from itertools import accumulate, count, islice
    def A007408gen(): yield from map(lambda x: x.numerator, accumulate(Fraction(1, k**3) for k in count(1)))
    print(list(islice(A007408gen(), 20))) # Michael S. Branicky, Jun 26 2022

Formula

Sum_{k = 1 .. n} 1/k^3 = sqrt(sum_{j = 1 .. n} sum_{i = 1 .. n} 1/(i * j)^3). - Alexander Adamchuk, Oct 26 2004

A124876 Number of prime factors (counted with multiplicity) in factorization of A007408(n).

Original entry on oeis.org

0, 2, 1, 3, 2, 4, 3, 2, 3, 5, 3, 3, 3, 2, 1, 4, 2, 5, 1, 3, 2, 6, 2, 4, 2, 1, 3, 5, 3, 6, 1, 2, 3, 2, 3, 10, 4, 4, 5, 5, 8, 7, 7, 2, 4, 7, 3, 2, 4, 3, 2, 5, 3, 4, 2, 8, 3, 4, 4, 5, 3, 3, 7, 2, 5, 10, 4, 2, 6, 8, 3, 6, 6, 4, 3, 6, 4, 7, 4, 4, 3, 4, 8, 5, 7, 4
Offset: 1

Views

Author

M. F. Hasler, Nov 11 2006

Keywords

Examples

			a(1) = 0 since A007408(1) = 1 contains no prime factor,
a(2) = 2 since A007408(2) = 9 = 3 * 3,
a(3) = 1 since A007408(3) = 251 is prime,
a(6) = 4 since A007408(6) = 7 * 7 * 11 * 53.
		

Crossrefs

Programs

  • Maple
    seq( add(op(2,j),j=op(2,(ifactors@A007408)(n))), n=1..28 );
    A001222 := proc(n) numtheory[bigomega](n) ; end: b := fscanf("b007408.txt","%d %d") : while b <> [] do printf("%d, ",A001222(op(2,b))) ; b := fscanf("b007408.txt","%d %d") : od : # R. J. Mathar, May 18 2007
  • Mathematica
    Table[PrimeOmega[Numerator[Sum[1/k^3, {k, 1, n}]]], {n, 1, 50}] (* Amiram Eldar, Feb 09 2020 *)
    PrimeOmega[Numerator[Accumulate[1/Range[50]^3]]] (* Harvey P. Dale, Aug 28 2023 *)

Formula

a(n) = A001222(A007408(n)). - R. J. Mathar, May 18 2007

Extensions

More terms from R. J. Mathar, May 18 2007
More terms from Amiram Eldar, Feb 09 2020
Showing 1-2 of 2 results.