A124796 Coefficients in expansion of powers of the operator "multiplication by f(x) followed by differentiation", in the prime factorization order.
1, 1, 1, 1, 0, 3, 0, 1, 1, 1, 0, 6, 0, 0, 0, 1, 0, 7, 0, 4, 0, 0, 0, 10, 0, 0, 1, 1, 0, 4, 0, 1, 0, 0, 0, 25, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 15, 0, 5, 0, 0, 0, 30, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 65, 0, 0, 0, 0, 0, 0, 0, 20, 1, 0, 0, 7, 0, 0, 0, 1, 0, 11, 0, 0, 0, 0, 0, 21, 0, 0, 0, 4, 0
Offset: 1
Keywords
Examples
From _Antti Karttunen_, Feb 28 2023: (Start) For n=6, a(6) = a(2^1 * 3^1) = a([1,1,0,0,0,...]) = a([0,1,0,0,...]) + (1+1)*a([1,0,0,0,...]) + 0 = a(3) + 2*a(1) = 3. For n=10, a(10) = a(2^1 * 5^1) = a([1,0,1,0,0,0...]) = a([0,0,1,0,0,0,...]) + 2*0 + 1*a([0,1,0,0,0,...]) = a(5) + 0 + 1*a(3) = 1. For n=20, a(20) = a(2^2 * 5^1) = a([2,0,1,0,0,0...]) = a([1,0,1,0,0,0,...]) + 3*0 + 1*a([1,1,0,0,0,...]) = a(10) + 0 + 1*a(6) = 1+3 = 4. (End)
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
Programs
-
PARI
A124796(n) = if(1==n,1,my(u=primepi(vecmax(factor(n)[, 1]))); if(n%3,0,((1+valuation(n,2)) * A124796(n/3))) + if(n%2,0,(A124796(n/2) + sum(i=3,u,if(n%prime(i),0,(valuation(n,prime(i-1))+1)*A124796((n/2)*prime(i-1)/prime(i))))))); \\ Antti Karttunen, Feb 28 2023
Formula
For n=p0^k0*p1^k1*... where 2=p0
a([k0,k1,0,0,...]) = S(k0+k1+1,k0+1), Stirling number of the 2nd kind, see A008277.
Comments