A124805 Number of circular n-letter words over the alphabet {0,1,2,3} with adjacent letters differing by at most 2.
1, 4, 14, 46, 162, 574, 2042, 7270, 25890, 92206, 328394, 1169590, 4165554, 14835838, 52838618, 188187526, 670239810, 2387094478, 8501763050, 30279478102, 107841960402, 384084837406, 1367938433018, 4871984973862
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- OEIS Wiki, Number of base k circular n-digit numbers with adjacent digits differing by d or less
- Index entries for linear recurrences with constant coefficients, signature (4,-1,-2).
Programs
-
Magma
I:=[1,4,14,46]; [n le 4 select I[n] else 4*Self(n-1) -Self(n-2) -2*Self(n-3): n in [1..40]]; // G. C. Greubel, Aug 03 2023
-
Mathematica
LinearRecurrence[{4,-1,-2}, {1,4,14,46}, 40] (* G. C. Greubel, Aug 03 2023 *)
-
SageMath
A206776=BinaryRecurrenceSequence(3,2,2,3) [1+A206776(n) -2*int(n==0) for n in range(41)] # G. C. Greubel, Aug 03 2023
Formula
a(n) = 1 + A206776(n) for n > 0. - Bruno Berselli, Jan 11 2013
From Colin Barker, Jun 02 2017: (Start)
G.f.: (1 - x^2 - 4*x^3) / ((1 - x)*(1 - 3*x - 2*x^2)).
a(n) = 1 + ((3-sqrt(17))/2)^n + ((3+sqrt(17))/2)^n for n>0.
a(n) = 4*a(n-1) - a(n-2) - 2*a(n-3) for n > 3. (End)
Comments