cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124805 Number of circular n-letter words over the alphabet {0,1,2,3} with adjacent letters differing by at most 2.

Original entry on oeis.org

1, 4, 14, 46, 162, 574, 2042, 7270, 25890, 92206, 328394, 1169590, 4165554, 14835838, 52838618, 188187526, 670239810, 2387094478, 8501763050, 30279478102, 107841960402, 384084837406, 1367938433018, 4871984973862
Offset: 0

Views

Author

R. H. Hardin, Dec 28 2006

Keywords

Comments

Empirical: a(base, n) = a(base-1, n) + A005191(n+1) for base >= 2*floor(n/2) + 1 where base is the number of letters in the alphabet.
Sequence appears to have generating function (1-x^2-4*x^3)/((1-x)*(1-3*x-2*x^2)). The degree of the numerator would drop by one if the initial term were changed from 1 to 3: (3-8*x+x^2)/((1-x)*(1-3*x-2*x^2)). - Creighton Dement, Aug 20 2007

Crossrefs

Programs

  • Magma
    I:=[1,4,14,46]; [n le 4 select I[n] else 4*Self(n-1) -Self(n-2) -2*Self(n-3): n in [1..40]]; // G. C. Greubel, Aug 03 2023
    
  • Mathematica
    LinearRecurrence[{4,-1,-2}, {1,4,14,46}, 40] (* G. C. Greubel, Aug 03 2023 *)
  • SageMath
    A206776=BinaryRecurrenceSequence(3,2,2,3)
    [1+A206776(n) -2*int(n==0) for n in range(41)] # G. C. Greubel, Aug 03 2023

Formula

a(n) = 1 + A206776(n) for n > 0. - Bruno Berselli, Jan 11 2013
From Colin Barker, Jun 02 2017: (Start)
G.f.: (1 - x^2 - 4*x^3) / ((1 - x)*(1 - 3*x - 2*x^2)).
a(n) = 1 + ((3-sqrt(17))/2)^n + ((3+sqrt(17))/2)^n for n>0.
a(n) = 4*a(n-1) - a(n-2) - 2*a(n-3) for n > 3. (End)