cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124861 Expansion of 1/(1-x-3*x^2-4*x^3-2*x^4).

Original entry on oeis.org

1, 1, 4, 11, 29, 80, 219, 597, 1632, 4459, 12181, 33280, 90923, 248405, 678656, 1854123, 5065557, 13839360, 37809835, 103298389, 282216448, 771029675, 2106492245, 5755043840, 15723072171, 42956232021, 117358608384, 320629680811, 875976578389, 2393212518400, 6538378193579
Offset: 0

Views

Author

Paul Barry, Nov 10 2006

Keywords

Comments

Diagonal sums of number triangle A124860.

Programs

  • Mathematica
    LinearRecurrence[{1,3,4,2},{1,1,4,11},30] (* or *) CoefficientList[ Series[ 1/(1-x-3x^2-4x^3-2x^4),{x,0,30}],x] (* Harvey P. Dale, Apr 22 2011 *)
  • PARI
    Vec(1/(1-x-3*x^2-4*x^3-2*x^4) + O(x^40)) \\ Michel Marcus, May 19 2025

Formula

a(n) = a(n-1)+3*a(n-2)+4*a(n-3)+2*a(n-4); a(n) = Sum_{k=0..floor(n/2)} J(n-k+1)*C(n-k,k) where J(n) = A001045(n). - corrected by Harvey P. Dale, Apr 22 2011
G.f.: 1 + x/(G(0) - x) where G(k) = 1 - 8*x - 2*k*x + k + 2*x*(k+1)*(k+5)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Apr 09 2013

Extensions

More terms from Michel Marcus, May 19 2025