cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124888 Primes with prime number of only prime digits (i.e., 2, 3, 5, 7).

Original entry on oeis.org

23, 37, 53, 73, 223, 227, 233, 257, 277, 337, 353, 373, 523, 557, 577, 727, 733, 757, 773, 22273, 22277, 22573, 22727, 22777, 23227, 23327, 23333, 23357, 23537, 23557, 23753, 23773, 25237, 25253, 25357, 25373, 25523, 25537, 25577, 25733, 27253, 27277
Offset: 1

Views

Author

Lekraj Beedassy, Nov 12 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[3000]],ContainsOnly[IntegerDigits[#],{2,3,5,7}]&&PrimeQ[Length[IntegerDigits[#]]]&] (* James C. McMahon, Dec 14 2024 *)
  • PARI
    isok(p) = isprime(p) && (d=digits(p)) && isprime(#d) && vecmin(vector(#d, k, isprime(d[k]))); \\ Michel Marcus, Sep 21 2017
    
  • Python
    from sympy import isprime, prime
    from itertools import count, islice, product
    def agen(): yield from filter(isprime, (int("".join(s)+e) for i in count(1) for s in product("2357", repeat=prime(i)-1) for e in "37"))
    print(list(islice(agen(), 42))) # Michael S. Branicky, Jun 23 2022

Extensions

Terms 773, 23753 inserted by Georg Fischer, Jun 23 2022