A124967 Numbers which can be expressed as the ordered sum of 3 squares in 3 or more different ways.
41, 50, 54, 65, 66, 74, 81, 86, 89, 90, 98, 99, 101, 110, 113, 114, 117, 121, 122, 125, 126, 129, 131, 134, 137, 145, 146, 149, 150, 153, 161, 162, 164, 166, 169, 170, 171, 173, 174, 178, 179, 181, 182, 185, 186, 189, 194, 197, 198, 200, 201, 205, 206, 209
Offset: 1
Keywords
Examples
a(1) = 41 because 41 = 4^2+4^2+3^2 or 5^2+4^2+0^2 or 6^2+2^2+1^2. 117=0^2+6^2+9^2=1^2+4^2+10^2=2^2+7^2+8^2, so 117 is in the list.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(t*i^2
3, 3, min(3, b(n, i-1, t)+ `if`(i^2>n, 0, b(n-i^2, i, t-1)))))) end: a:= proc(n) option remember; local k; for k from 1 +`if`(n=1, 0, a(n-1)) while b(k, isqrt(k), 3)<3 do od; k end: seq(a(n), n=1..100); # Alois P. Heinz, Apr 10 2013 -
Mathematica
Select[Range[210], Length@PowersRepresentations[#, 3, 2] >= 3 &] (* Ray Chandler, Oct 31 2019 *)
-
PARI
isA124967(n)={ local(cnt=0,z2) ; for(x=0,floor(sqrt(n)), for(y=x,floor(sqrt(n-x^2)), z2=n-x^2-y^2 ; if( z2>=y^2 && issquare(z2), cnt++ ; ) ; if(cnt >=3, return(1) ) ; ) ; ) ; return(0) ; } { for(n=1,200, if( isA124967(n), print1(n,", ") ; ) ; ) ; } (Mathar)
Extensions
Corrected and extended by Ray Chandler and R. J. Mathar, Nov 29 2006