cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A125022 Numbers with a unique partition as the sum of 2 squares x^2 + y^2.

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 26, 29, 32, 34, 36, 37, 40, 41, 45, 49, 52, 53, 58, 61, 64, 68, 72, 73, 74, 80, 81, 82, 89, 90, 97, 98, 101, 104, 106, 109, 113, 116, 117, 121, 122, 128, 136, 137, 144, 146, 148, 149, 153, 157, 160, 162, 164, 173, 178, 180, 181
Offset: 1

Views

Author

Artur Jasinski, Nov 16 2006

Keywords

Comments

A000161(a(n)) = 1. [Reinhard Zumkeller, Aug 16 2011]

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a125022 n = a125022_list !! (n-1)
    a125022_list = elemIndices 1 a000161_list
    -- Reinhard Zumkeller, Aug 16 2011
  • Mathematica
    Select[Range[0,200],Length@PowersRepresentations[#,2,2]==1&] (* Giorgos Kalogeropoulos, Mar 21 2021 *)

Formula

a(n) = A125021(n)/2.

Extensions

Name edited by Giorgos Kalogeropoulos, Mar 21 2021

A124983 Nonprime numbers == 1 (mod 4) with a unique partition as a sum of 2 squares x^2 + y^2.

Original entry on oeis.org

1, 9, 45, 49, 81, 117, 121, 153, 245, 261, 333, 361, 369, 405, 441, 477, 529, 549, 605, 637, 657, 729, 801, 833, 873, 909, 961, 981, 1017, 1053, 1089, 1233, 1341, 1377, 1413, 1421, 1557, 1573, 1629, 1737, 1773, 1805, 1813, 1849, 2009, 2057, 2061, 2097, 2169
Offset: 1

Views

Author

Artur Jasinski, Nov 16 2006

Keywords

Comments

Intersection of A124982 and A125018. - Michel Marcus, Nov 02 2013

Crossrefs

Programs

  • Mathematica
    Select[4 * Range[0, 500] + 1, !PrimeQ[#] && Length @ PowersRepresentations[#, 2, 2] == 1 &] (* Amiram Eldar, Mar 12 2020 *)
  • PARI
    isok(n)= {if (isprime(n) || (n % 4 != 1), return (0)); A000161(n) == 1;} \\ Michel Marcus, Nov 02 2013

Extensions

More terms from Michel Marcus, Nov 02 2013

A125018 Numbers == 1 (mod 4) with a unique partition as a sum of 2 squares x^2 + y^2.

Original entry on oeis.org

1, 5, 9, 13, 17, 29, 37, 41, 45, 49, 53, 61, 73, 81, 89, 97, 101, 109, 113, 117, 121, 137, 149, 153, 157, 173, 181, 193, 197, 229, 233, 241, 245, 257, 261, 269, 277, 281, 293, 313, 317, 333, 337, 349, 353, 361, 369, 373, 389, 397, 401, 405, 409, 421, 433
Offset: 1

Views

Author

Artur Jasinski, Nov 16 2006

Keywords

Examples

			5 = 1^2 + 2^2, 9 = 0^2 + 3^2, 13 = 2^2 + 3^2, 17 = 1^2 + 4^2, 29 = 2^2 + 5^2, ... - _Michael Somos_, Jul 25 2023
		

Crossrefs

Programs

  • Mathematica
    Select[4 * Range[0, 100] + 1, Length @ PowersRepresentations[#, 2, 2] == 1 &] (* Amiram Eldar, Mar 12 2020 *)
  • PARI
    isok(n)= {if (n % 4 != 1, return(0)); A000161(n) == 1;} \\ Michel Marcus, Nov 02 2013

Extensions

More terms from Michel Marcus, Nov 02 2013

A125020 a(n) = (A124983(n)-1)/4.

Original entry on oeis.org

0, 2, 11, 12, 20, 29, 30, 38, 61, 65, 83, 90, 92, 101, 110, 119, 132, 137, 151, 159, 164, 182, 200, 208, 218, 227, 240, 245, 254, 263, 272, 308, 335, 344, 353, 355, 389, 393, 407, 434, 443, 451, 453, 462, 502, 514, 515, 524, 542, 551, 552, 578, 587, 600, 605, 623
Offset: 1

Views

Author

Artur Jasinski, Nov 16 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 600], !PrimeQ[4*# + 1] && Length @ PowersRepresentations[4*# + 1, 2, 2] == 1 &] (* Amiram Eldar, Mar 12 2020 *)

Extensions

More terms from Amiram Eldar, Mar 12 2020

A125021 Even numbers with a unique partition as the sum of 2 squares x^2 + y^2.

Original entry on oeis.org

0, 2, 4, 8, 10, 16, 18, 20, 26, 32, 34, 36, 40, 52, 58, 64, 68, 72, 74, 80, 82, 90, 98, 104, 106, 116, 122, 128, 136, 144, 146, 148, 160, 162, 164, 178, 180, 194, 196, 202, 208, 212, 218, 226, 232, 234, 242, 244, 256, 272, 274, 288, 292, 296, 298, 306, 314
Offset: 1

Views

Author

Artur Jasinski, Nov 16 2006, corrected Nov 18 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[2 * Range[0, 200], Length @ PowersRepresentations[#, 2, 2] == 1 &] (* Amiram Eldar, Mar 12 2020 *)
Showing 1-5 of 5 results.