cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A083064 Square number array T(n,k) = (k*(k+2)^n+1)/(k+1) read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 11, 14, 1, 1, 5, 19, 43, 41, 1, 1, 6, 29, 94, 171, 122, 1, 1, 7, 41, 173, 469, 683, 365, 1, 1, 8, 55, 286, 1037, 2344, 2731, 1094, 1, 1, 9, 71, 439, 2001, 6221, 11719, 10923, 3281, 1, 1, 10, 89, 638, 3511, 14006, 37325, 58594, 43691, 9842, 1
Offset: 0

Views

Author

Paul Barry, Apr 21 2003

Keywords

Examples

			Rows begin:
1  1   1    1     1      1       1        1         1 ...
1  2   5   14    41    122     365     1094      3281 ...  A007051
1  3  11   43   171    683    2731    10923     43691 ...  A007583
1  4  19   94   469   2344   11719    58594    292969 ...  A083065
1  5  29  173  1037   6221   37325   223949   1343693 ...  A083066
1  6  41  286  2001  14006   98041   686286   4804001 ...  A083067
1  7  55  439  3511  28087  224695  1797559  14380471 ...  A083068
1  8  71  638  5741  51668  465011  4185098  37665881 ...  A187709
1  9  89  889  8889  88889  888889  8888889  88888889 ...  A059482
1 10 109 1198 13177 144946 1594405 17538454 192922993 ...  A199760, etc.
Column 2: A000027;
column 3: A028387;
column 4: A083074;
column 5: A125082;
column 6: A125083.
Diagonals:
1,  2,  11,   94,  1037,  14006, ... A083069;
1,  3,  19,  173,  2001,  28087, ... A083071;
1,  4,  29,  286,  3511,  51668, ... A083072;
1,  5,  41,  439,  5741,  88889, ... A083073;
1,  5,  43,  469,  6221,  98041, ... A083070;
1, 14, 171, 2344, 37325, 686286, ... A191690.
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 5, 1;
1, 4, 11, 14, 1;
1, 5, 19, 43, 41, 1;
1, 6, 29, 94, 171, 122, 1; etc.
		

Crossrefs

Extensions

Edited by Bruno Berselli, Jun 21 2013

A173180 Numbers k such that k^5-k^4-k^3-k^2-k-1 is prime.

Original entry on oeis.org

4, 6, 8, 14, 18, 20, 24, 26, 28, 32, 40, 42, 50, 58, 62, 68, 72, 100, 104, 120, 122, 140, 150, 174, 184, 192, 210, 234, 240, 260, 266, 278, 288, 300, 306, 326, 346, 366, 404, 432, 444, 460, 464, 466, 470, 484, 488, 512, 516, 526, 538, 556, 562, 564, 570, 584
Offset: 1

Views

Author

Keywords

Comments

All terms are even. - Robert Israel, Apr 11 2019

Crossrefs

Programs

  • Maple
    filter:= k -> isprime( k^5-k^4-k^3-k^2-k-1):
    select(filter, 2*[$1..500]); # Robert Israel, Apr 11 2019
  • Mathematica
    f[n_]:=n^5-n^4-n^3-n^2-n-1;Select[Range[7! ],PrimeQ[f[ #1]]&]
    Select[Range[2,600,2],PrimeQ[#^5-Total[#^Range[0,4]]]&] (* Harvey P. Dale, Sep 26 2023 *)

Formula

{k: A125083(k) in A000040}. [R. J. Mathar, Feb 13 2010]

A237640 Numbers n of the form p^5 - Phi_5(p) (for prime p) such that n^5 - Phi_5(n) is also prime.

Original entry on oeis.org

122, 340352, 830519696, 11479086422, 266390469692, 310503441398, 2718130415306, 14837993872846, 59538248604388, 889257663626476, 2496623039993996, 6427431330617746, 7120028814392596, 10777302002014868, 12942591289426088, 24039736320940828
Offset: 1

Views

Author

Derek Orr, Feb 10 2014

Keywords

Comments

All numbers are congruent to 2 mod 10, 6 mod 10, or 8 mod 10.
x^5 - Phi_5(x) = x^5-x^4-x^3-x^2-x-1.

Examples

			122 = 3^5-3^4-3^3-3^2-3^1-1 (3 is prime) and 122^5-122^4-122^3-122^2-122^1-1 = 26803717321 is prime. Thus, 122 is a member of this sequence.
		

Crossrefs

Programs

  • Python
    import sympy
    from sympy import isprime
    def poly5(x):
      if isprime(x):
        f = x**5-x**4-x**3-x**2-x-1
        if isprime(f**5-f**4-f**3-f**2-f-1):
          return True
      return False
    x = 1
    while x < 10**5:
      if poly5(x):
        print(x**5-x**4-x**3-x**2-x-1)
      x += 1

A238445 Primes p such that f(f(p)) is prime, where f(x) = x^5-x^4-x^3-x^2-x-1.

Original entry on oeis.org

3, 13, 61, 103, 193, 199, 307, 431, 569, 977, 1201, 1451, 1481, 1609, 1669, 1889, 2371, 2381, 2711, 2819, 3083, 3469, 4289, 4337, 4567, 5231, 5501, 6733, 7043, 7253, 7351, 7549, 8707, 9257, 9497, 10039, 10687, 11491, 12227, 12517, 12941, 13397
Offset: 1

Views

Author

Derek Orr, Feb 26 2014

Keywords

Examples

			3 is prime. 3^5-3^4-3^3-3^2-3-1 = 122 and 122^5-122^4-122^3-122^2-122-1 = 26803717321 is a prime number. Thus, 3 is a member of this sequence.
		

Crossrefs

Programs

  • Python
    import sympy
    from sympy import isprime, primerange
    def f(x):
        return x**5-x**4-x**3-x**2-x-1
    [p for p in primerange(2, 10**5) if isprime(f(f(p)))]
Showing 1-4 of 4 results.