cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125135 Triangle read by rows in which row n lists prime factors of p^p - 1 where p = prime(n).

Original entry on oeis.org

3, 2, 13, 2, 2, 11, 71, 2, 3, 29, 4733, 2, 5, 15797, 1806113, 2, 2, 3, 53, 264031, 1803647, 2, 2, 2, 2, 10949, 1749233, 2699538733, 2, 3, 3, 109912203092239643840221, 2, 11, 461, 1289, 831603031789, 1920647391913
Offset: 1

Views

Author

N. J. A. Sloane, Jan 21 2007

Keywords

Examples

			Triangle begins:
3;
2, 13;
2, 2, 11, 71;
2, 3, 29, 4733;
2, 5, 15797, 1806113;
2, 2, 3, 53, 264031, 1803647;
2, 2, 2, 2, 10949, 1749233, 2699538733;
2, 3, 3, 109912203092239643840221;
2, 11, 461, 1289, 831603031789, 1920647391913;
2, 2, 7, 59, 16763, 84449, 2428577, 14111459, 58320973, 549334763;
...
n=4: p=7, 7^7-1 = 823542 = 2*3*29*4733 gives row 4.
		

Crossrefs

Programs

  • Magma
    for p in [ n : n in [1..100] | IsPrime(n) ] do "\nDoing p =", p; n := p^p -1; Factorisation(n); end for; // John Cannon
  • Maple
    T:= n-> (p-> sort(map(i-> i[1]$i[2], ifactors(p^p-1)[2]))[])(ithprime(n)):
    seq(T(n), n=1..10);  # Alois P. Heinz, May 20 2022