A125135 Triangle read by rows in which row n lists prime factors of p^p - 1 where p = prime(n).
3, 2, 13, 2, 2, 11, 71, 2, 3, 29, 4733, 2, 5, 15797, 1806113, 2, 2, 3, 53, 264031, 1803647, 2, 2, 2, 2, 10949, 1749233, 2699538733, 2, 3, 3, 109912203092239643840221, 2, 11, 461, 1289, 831603031789, 1920647391913
Offset: 1
Examples
Triangle begins: 3; 2, 13; 2, 2, 11, 71; 2, 3, 29, 4733; 2, 5, 15797, 1806113; 2, 2, 3, 53, 264031, 1803647; 2, 2, 2, 2, 10949, 1749233, 2699538733; 2, 3, 3, 109912203092239643840221; 2, 11, 461, 1289, 831603031789, 1920647391913; 2, 2, 7, 59, 16763, 84449, 2428577, 14111459, 58320973, 549334763; ... n=4: p=7, 7^7-1 = 823542 = 2*3*29*4733 gives row 4.
Links
- Sam Wagstaff, Factorizations of p^p - 1 for most p < 180
Programs
-
Magma
for p in [ n : n in [1..100] | IsPrime(n) ] do "\nDoing p =", p; n := p^p -1; Factorisation(n); end for; // John Cannon
-
Maple
T:= n-> (p-> sort(map(i-> i[1]$i[2], ifactors(p^p-1)[2]))[])(ithprime(n)): seq(T(n), n=1..10); # Alois P. Heinz, May 20 2022