cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125165 Triangle read by rows: T(n,k) = C(n,k) + 3*C(n,k+1) + 2*C(n,k+2) (0<=k<=n).

Original entry on oeis.org

1, 4, 1, 9, 5, 1, 16, 14, 6, 1, 25, 30, 20, 7, 1, 36, 55, 50, 27, 8, 1, 49, 91, 105, 77, 35, 9, 1, 64, 140, 196, 182, 112, 44, 10, 1, 81, 204, 336, 378, 294, 156, 54, 11, 1, 100, 285, 540, 714, 672, 450, 210, 65, 12, 1, 121, 385, 825, 1254, 1386, 1122, 660, 275, 77, 13, 1, 144
Offset: 0

Views

Author

Gary W. Adamson, Nov 21 2006

Keywords

Comments

Binomial transform of the infinite tridiagonal matrix M with main diagonal (1,1,1...), subdiagonal (3,3,3...) and subsubdiagonal (2,2,2...).
Sum of entries in row n = 6*2^n-2n-5 = A050488(n+1).
Riordan array ((1+x)/(1-x)^3, x/(1-x)). - Philippe Deléham, Dec 07 2013

Examples

			Triangle starts:
1;
4, 1;
9, 5, 1;
16, 14, 6, 1;
25, 30, 20, 7, 1;
36, 55, 50, 27, 8, 1;
49, 91, 105, 77, 35, 9, 1;
		

Crossrefs

Programs

  • Magma
    [[Binomial(n,k) + 3*Binomial(n,k+1) + 2*Binomial(n,k+2): k in [0..n]]: n in [0..15]]; // G. C. Greubel, Oct 23 2018
  • Maple
    T:=(n,k)->binomial(n,k)+3*binomial(n,k+1)+2*binomial(n,k+2): for n from 0 to 11 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    Table[Binomial[n,k]+3Binomial[n,k+1]+2Binomial[n,k+2],{n,0,15},{k,0,n}]//Flatten (* Harvey P. Dale, Nov 20 2016 *)
  • PARI
    for(n=0,15, for(k=0,n, print1(binomial(n,k) + 3*binomial(n,k+1) + 2*binomial(n,k+2), ", "))) \\ G. C. Greubel, Oct 23 2018
    

Formula

T(n,k) = T(n-1,k) + T(n-1,k-1) for n>=k>=1.
T(n,0) = (n+1)^2 = A000290(n+1).
T(n,k) = 3*T(n-1,k) + T(n-1,k-1)-3*T(n-2,k)-2*T(n-2,k-1)+T(n-3,k)+T(n-2,k-1), T(0,0)=1, T(1,0)=4, T(1,1)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Jan 10 2014
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(16 + 14*x + 6*x^2/2! + x^3/3!) = 16 + 30*x + 50*x^2/2! + 77*x^3/3! + 112*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). Cf. A233295. - Peter Bala, Dec 21 2014

Extensions

Edited by N. J. A. Sloane, Dec 02 2006